CcsC/SD-86/6704,/UD6

UARS CDHF SOFTWARE SYSTEM (UCSS)
PROGRAMMER'S GUIDE
TO

PRODUCTION SOFTWARE SUPPORT SERVICES

Prepared for

GODDARD SPACE FLIGHT CENTER

By
COMPUTER SCIENCES CORPORATION
Under

Contract NAS 5-31000

February 1993

Prepared by: Approved by:
N D. Taghn 2/25/93
B. Pedersen at K. D. Taylo¥ Date

S. Adamson
C. Agard

G. Blackwell
P. Goldstein
L. Lu

J. Martin

ABSTRACT

This document defines the interfaces to production software
support services at the Upper Atmosphere Research Satellite (UARS)
Central Data Handling Facility (CDHF) and production testing services
on Remote Analysis Computers (RACs). These services developed under
the UARS CDHF Software System (UCSS) contract support access to all
levels of instrument data files and other types of cataloged data
including Level 0 engineering, quality, spacecraft, and onboard
computer (OBC) data. In addition, the UCSS provides routines to
initialize and terminate production programs and to perform error
reporting.

ii

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 PURPOSE AND SCOPE . . e e e e
18 UARS PRODUCTION PROCESSING OVERVIEW . . .
1.3 DOCUMENT ORGANIZATION « + « . .

CHAPTER 2 UCSS PRODUCTION PROCESSING ENVIRONMENT
241 UARS CATALOG « « « « « « o o = « « « « « &
2.2 PRODUCTION JOBS & & % s = & & s % % & ® %
3.5 PRODUCTION PROGRAM . . . « « &« « « + . .
2.2.2 PROCESSING TIME RANGE
2203 PRODUCTION INPUT . + « v « « « o + o
2Bk PRODUCTION OUTPUT . « « « &« « o « «
2.2.5 SCRATCH FILES .« « « « = 5 s o s s s s
2.2.6 CONDITIONAL PROCESSING
2.3 PRODUCTION SCHEDULING . . « + + + « « . .
2.5.1 PRODUCTION PROGRAM CATALOG ENTRIES . . .
2.3.2 PRODUCTION JOB DEFINITIONS
233 SCHEDULING REQUESTS c ..
2.4 UCSS PRODUCTION RECOVERY GUIDELINES . . .
2.4.1 PRODUCTION JOB RERUN £ ® @ z
2.4.2 OPERATING SYSTEM CHECKPOINT/RESTART . .
2.4.3 USER SUPPLIED RECOVERY
2.5 PRODUCTION PROGRAM TESTING

CHAPTER 3 UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES
3.1 PRODUCTION CONTROL ROUTINES
3.1.1 PROGRAM INITIALIZATION (PGINIT)
3.1.2 PROGRAM TERMINATION (PGTERM)
3.2 FILE ACCESS « « « + o o o « o o o o « .
32l OPEN LEVEL 0 DATA (OPENLO)
3.2.2 ASSIGN CATALOGED FILE (ASGCAT)
$2. 3 ASSIGN CORRELATIVE FILE (ASGCOR)
8,27 ASSIGN CALIBRATION FILE (ASGCAL)
325 ASSIGN SCRATCH FILE (ASGSCR)
3 ASSIGN USER STATUS FILE (ASGUSR)
3.2.7 OPEN LEVEL 3AT DATA (OPENL3AT)
3.2.8 OPEN LEVEL 3AL DATA (OPENL3AL)
3.2.9 OPEN LEVEL 3S DATA (OPENL3S)
3:2+10 OPEN LEVEL 3TP DATA (OPENL3TP)
3.2.11 OPEN LEVEL 3LP DATA (OPENL3LP)
3.2.12 QUALITY READ (QUALRD)
3,8.18 READ LEVEL O (READLO) «
3.2 14 READ LEVEL 3AT (READL3AT)
3.2.15 READ LEVEL 3S (READL3S)

iii

L L R I |
NHE VOO WNR R

WWWwWwwuwww

ol

3.2.16 READ LEVEL 3AL (READL3AL) . . « + + .« « . . . 3=31
3,2.17 READ LEVEL 3TP DATA (READL3TP) 3=34
3,218 READ LEVEL 3LP DATA (READL3LP) 3=36
3.2.19 WRITE LEVEL 3AT (WRITEL3AT) 3-38
3.2.20 WRITE LEVEL 3S (WRITEL3S) 3=39
3.2.21 WRITE LEVEL 3AL (WRITEL3AL) 3-40
4,8.9% WRITE LEVEL 3TP DATA (WRITEL3TP) 3-42
3.2.23 WRITE LEVEL 3LP DATA (WRITEL3LP) 3-43
34228 CLOSE TLOGICAL PILE (CIOSELF) = = « % s & = s s 3-dd
3.2.25 DEASSIGN LOGICAL ID (DASLID) . . « o « 3-46
3.3 UTILITY SERVICES e e e e e e+ . . 3-a8
3.3.1 ERROR CODE REPORTING (ERRCDE) 3-48
3.3.2 UDTF TO VMS TIME CONVERSION (UTL_CON UDTF "UMS) 3-48
3300 PRESSURE/ALTITUDE GRID UTILITY (VERT DEF) . . 3-49
I DECODE OBC EMAF INTO OBC REPORTS (OBCDECODE) . 3-50
3355 COMPARE TIMES (UTL COMPARE TIME) 3=52
3.3.6 COMPUTE SECONDS BETWEEN UDTF TIMES

(UTL_SEC_TIME DIF) s e e e e . . 3-53
3.3.7 CONVERT UARS DAY TO UDTF FORMAT

(UTL_UARS_TO UDTF) &
338 CONVERT UDTF FORMAT TO UARS DAY

(UTL_UDTF TO UARS) . « « « « « « « « « « « « . 3-53

CHAPTER 4 RAC SIMULATED SERVICES
4.1 PROGRAM CONTROL SERVICES S g
4.1.1 JOB INITIALIZATION (RSS_JOB CINIT) 4-4
4.1.2 PROGRAM INITIALIZATION (PGINIT) 4-4
4.1.3 PROGRAM TERMINATION (PGTERM) 4-12
4.1.4 JOB TERMINATION (RSS_JOB TERM) 4=12
4.2 FILE ACCESS .« o o s o o o o = o o o = o « « « o #4=12
4.3 UTILITY SERVICES 4-13
4.4 JOB RUNSTREAM FOR THE SIMULATED ENVIRONMENT . . 4-13

CHAPTER 5 UCSS ANALYSIS SERVICES
5.1 ANALYSIS SERVICES . &+ &« &« = « « o « o o o o o « 4 5=1
5.2 PROGRAM CONTROL SERVICES . . + + « « « « « o« « + . 5=4
5.2.1 PROGRAM INITIALIZATION (PGINIT) « . . . 5-4
5.2.2 PROGRAM TERMINATION (PGTERM) g % @ B & 8 & & § » Bed
5.3 FILE ACCESS ‘ m E ko S A s s 5 3 5D
5.3.1 LEVEL 3 FILE SERVICES . . . » = + « « « « - . . 5-5
B+3:2 ASSIGN / DEASSIGN SERVICES « « « +« « . . 5=5
5.3.3 OPEN QUICK-LOOK FILE (OPENQL) 5-8
5.3.4 READ QUICK-LOOK FILE (READQL) 5=9
5.3.5 READ QUICK-LOOK DATA QUALITY FILE (QUALQL) . 5-11
5.4 OTHER SERVICES . . « « « « + . - e
5.4.1 SET VERSION/CYCLE PARAMETERS (SETVERCY) . . . 5-12
5.4.2 GET VERSION/CYCLE PARAMETERS (GETVERCY) . . . 5-14

iv

APPENDIX A UARS DATE AND TIME FORMAT
APPENDIX B UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

APPENDIX C LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

APPENDIX D LEVEL 0 FILE FORMATS

SCIENCE TELEMETRY FORMATS AND DECOMMUTATION 8

DECOMMUTATED FILE FORMATS « « « + « « « &
GENERAL COMMENTS . . . « « ¢ o + o o o« o o o o =
FILE LABEL RECORD FORMAT « +« &« « + o« o« =
LEVEL 0 VIRTUAL FILES . . . “« W o o e e o ke
DATA RECORD HEADER INFORMATION
DATA RECORD BODY . : @ o o oW oW @ e
MULTIPART RECORDS . . . s @ W & % s e

ABSOLUTE TIME CODE (ATC) JUMPS AND SPLIT EMAFS .

» e = .

Ooogoooooo
A W

e e

WNNNDNDNDNDND R

APPENDIX E LEVEL 3 FILE FORMATS

GENERAL COMMENTS . . . ¢ « ¢ « o « o o o o o o+ =
LEVEL 3AT DATA . ¢ 4+ « o o o o o o o s « o « &
LEVEL 3AL DATA . « ¢ o s s &« o« » s s % '« '« '« '« %
LEVEL 3AS/3BS DATA . & & & = s s s % s @ % s & '
LEVEL 3A PARAMETER FILES« « & « « « o &

UARS STANDARD DATA ARRAY« .« « « « .
PRESSURE REFERENCED ARRAY . . . « « ¢ « o & o &
ALTITUDE REFERENCED ARRAY « + « « « =
WAVELENGTH REFERENCED ARRAY

LEVEL 3 FILE FORMAT . . . § & % & s & & & 8 8 3
SFDU STANDARD INFORMATION i = 5 5 . -
SFDU DESCRIPTOR FORMATS FOR LEVEL 3AT/3TP AND
3AS/3BS FILES . . . i R o5 s @ s
FILE LABEL RECORD FOR LEVEL 3AT/3TP FILES . . .
CONTINUATION LABEL RECORD FOR LEVEL 3AT/3TP AND
3AS/3BS FILES . . . Vo e e & % e s e
DATA RECORD FOR LEVEL 3AT FILES i o8 B 8 B o B
DATA RECORD FOR LEVEL 3TP FILES .

SFDU DESCRIPTOR FORMATS FOR LEVEL 3AL/3LP FILES
FILE LABEL RECORD FOR LEVEL 3AL/3LP FILES . .
CONTINUATION LABEL RECORD FOR LEVEL 3AL/3LP
FILES . . . T
DATA RECORD FOR LEVEL 3AL FILES I T R R
DATA RECORD FOR LEVEL 3LP FILES . . . o @
FILE LABEL RECORD FOR LEVEL 3AS/3BS FILES .« e
CONTINUATION LABEL RECORD FOR LEVEL 3AS/3BS
FILES VoW @
DATA RECORD FOR LEVEL 3AS/3BS FILES s e e =

L] L[] L] (]] - - -
LWWWRNNNKNRE R R

L] . L] - - . .

WNERE bW

[l M el B e B el e Bl s M e M el 5]

b9 by b b b b b b b b b
N

.
W w
c a
PR

.

L] L]
LWWWWwWw
L D . D)
VWoOoJdJowm

T
WwWwww

e = =
[S
WN RO

es)
w
=
o

| L T L I I |
Bk R WWWNDNRE

APPENDIX F ERROR HANDLING

F.l STATUS CODES . . « « « .

F.2 FATAL CONDITIONS
APPENDIX G LEVEL 0 SFDU FILE DESCRIPTION
APPENDIX H LEVEL 0 OBC REPORT NAMES

H.1 OBC REPORT NAMES AND NUMBERS .

H.2 OBC REPORT MNEMONICS
APPENDIX I GLOSSARY
APPENDIX J REFERENCES

vi

CHAPTER 1

INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this document is to define the production software
support services provided under the Upper Atmosphere Research
Satellite (UARS) Central Data Handling Facility (CDHF) Software System
(UcsSS) contract. Calling sequences are provided for the services
needed by the Principal Investigators (PIs) to develop their
production processing software. The orbit and attitude services are
addressed in the UARS Programmer's Guide for Orbit/Attitude Services
(Reference 4).

The UCSS production software support services are divided into
three areas. The production control routines are used to pass
information to and from production programs. These routines aid in
the control and monitoring of the production processing flow. The
file access services provide access to UCSS-managed data files.
Services are provided to access all levels of instrument data,
calibration files, correlative files, user status files, and scratch
files. The utility services provide functions including error
reporting.

1.2 UARS PRODUCTION PROCESSING OVERVIEW

One of the primary activities performed at the UARS CDHF is the
processing of the scientific data from Level 0 to Level 3B.
Scientific data processing is performed at the CDHF for 9 of the 10
UARS instruments. The instrument investigators are responsible for
developing the data processing software. The UCSS provides a
collection of production software support services which are used by
the PI-developed programs to access UCSS-managed data files and to
control the processing flow.

The PIs will initially develop the data processing software on
tpe Remote Analysis Computers (RACs). The UCSS provides a set of
simulated software support services to aid the PIs in the testing of
their software at the RACs. The calling sequences of the simulated

1-1

INTRODUCTION

services are identical to those of the production services. As a
result, production programs developed using the simulated services do
not have to be modified in order to use the production services.

Eventually, after sufficient testing, the data processing
software will be run in a production mode at the CDHF. The UCSS
provides scheduling tools that are used by CDHF operations personnel
to schedule and run production jobs. The information needed to
schedule production processing is maintained under configuration
control by operations personnel. Original (first time) processing is
scheduled when the required input data becomes available and when
there are sufficient computer resources to run the job. Reprocessing
(subsequent times) is performed as requested with the approval of the
UARS Project. Changes in software, calibration tables, or input files
normally result in reprocessing of data.

The UCSS provides a capability to run data processing software in
the production environment in test mode. The PIs can use this
capability to perform final testing of their software or for testing
after minor changes have been made to their programs.

1.3 DOCUMENT ORGANIZATION

This document is organized into five chapters. Chapter 1
provides an introduction to the types of support services provided for
production programs. Chapter 2 presents an overview of production
processing environment. Chapter 3 describes the detailed interfaces
of the production software support services. Chapter 4 discusses the
simulated services which are provided for use in testing production
programs at the RACs. Chapter 5 describes the analysis services.
Appendix A provides a detailed description of the UARS date and time
format used in many of the calling sequences to the software support
services. Appendix B provides an example to demonstrate the use of
some of the services, and Appendix C presents the guidelines for
Level 1 and 2 data processing. Appendix D presents a detailed
description of the Level 0 file formats. Appendix E contains the
description of the Level 3A file formats. Appendix F provides
information about error handling. Appendix G gives the Level 0 SFDU
File Description. Appendix H gives information needed for using the
OBCDECODE routine. Appendix I is a glossary and Appendix J is a list
of references.

CHAPTER 2

UCSS PRODUCTION PROCESSING ENVIRONMENT

One of the primary UCSS functions is the support of UARS
scientific data processing. The instrument investigators are
developing the software to process the data from Level 0 to Level 3A.
The UCSS provides production software support services which are used
by the PI-developed programs. These services provide access to UARS
data files and aid in the control of the production processing flow.
In addition, the UCSS provides scheduling tools which are used by CDHF
operations personnel to schedule and run production jobs. The
scheduling tools also support the capability of running jobs in a test
mode.

The UCSS must provide a flexible production environment that
accommodates a wide range of processing needs. In order to meet these
diverse needs, the UCSS has established some guidelines for the
production processing software. The purpose of this section is to
define these guidelines. Section 2.1 provides an overview of the UARS
Catalog. Section 2.2 describes in detail the elements of a production
job. Section 2.3 discusses the UCSS approach to production scheduling
and provides a description of the information the PIs must supply in
order to schedule processing. Section 2.4 provides guidelines for
recovery of production jobs. Section 2.5 describes the approach to
testing production software in the production scheduling environment.

2.1 UARS CATALOG

The UARS Catalog is an index of the UCSS-managed files that are
available to the UARS community. The files tracked in this catalog
are the Levels 0, 1, 2, 3AT, 3AS, 3AL, and 3BS, correlative,
calibration, orbit, attitude, Level 3 parameter files, and production
program files. Files can be added to the Catalog during production
processing or when the UCSS receives files from an external source
(e.g. Level 0 files from the Data Capture Facility). The UARS Catalog

is used to identify and locate the input files required for production
processing.

UCSS PRODUCTION PROCESSING ENVIRONMENT

The Catalog can be viewed as a collection of logical records
describing important characteristics or attributes of each file. 1In
production processing, some of the attributes of output files are
supplied by the user program and some are supplied by the UCSS
software. The user program provides the initial file attributes when
assigning or opening a new file using the ASGCAT, OPENL3AT, OPENL3AL,
OPENL3S, OPENL3TP, and OPENL3LP services (see Sections 3.2.2 and 3.2.7
through 3.2.11). Additional attributes can be provided when the user
program requests that a file be cataloged using the CLOSELF or DASLID
services (see Sections 3.2.24 and 3.2.25). For input cataloged files,
the user program specifies the catalog attributes necessary to
identify the required file when opening or assigning the files using
the OPENLO, ASGCAT, ASGCAL, ASGCOR, OPENL3AT, OPENL3AL, OPENL3S,
OPENL3TP, or OPENL3LP services (see Sections 3.2.1 through 3.2.4 and
3.2.7 through 3.2.11).

The UARS Catalog is maintained as a collection of relational
tables managed by the INGRES data base management system. The UCSS
Data Base Administrator (DBA) is responsible for defining the
structure of these tables in the UARS Catalog. In order to accomplish
this task, the DBA must have knowledge of the attributes applicable to
each class of data and of the valid values of the attributes. For
example, the DBA must know the valid Level 3AT data subtypes for each
instrument. The UCSS is required to be able to support changes in the
catalog structure as these changes are identified and approved.
Attributes can be added or deleted from the catalog structure or their
possible values can be changed with approval by the controlling
authority.

Errors occur when a user program attempts to catalog a file with
an unknown attribute or invalid attribute value.

2.2 PRODUCTION JOBS

A production job is a job requiring support services that is
initiated by the UCSS scheduler. A production job nominally processes
all data for an instrument from one level of data abstraction to the
next higher level for a specified time period. Other types of
production jobs can be supported such as single species or multilevel
processing. A production job is run as a series of one or more
production programs, executed in a specific order, using cataloged
input data, and producing cataloged output files, user status files,
and auxiliary files. Figure 2-1 depicts a sample production job. The
UCSS supports the capability of conditional branching within the
production job's runstream so that specific paths can be taken for
data dependent processing (see Section 2.2.6).

UCSS PRODUCTION PROCESSING ENVIRONMENT

Figure 2-1. Sample UARS Production Job

kkkdkhkkkkkkkkkk
* .

Level M * * Level N
Data Files = ———==c=a=—x > * T S S > Data files

* *

* x

* *
Calibration * * User Status
Data Files =====ccee-- > % UARS ¥ e ———— > Files

* s

* Production *

* *
Correlative * Job * Auxiliary
Date Piles seswsoacms > * *¥ cmeeesce—c———— > Files

* S

* *

* *
Orbit/Attitude * T o o o o o > Scratch
Data Files ==-=-—cece—-- > * * (mmmemcemec—c—ece—- Files

* *

khkkhkkkhkkkkkkkk

2.2.1 PRODUCTION PROGRAM

A production program is a load module that is used in the
processing of UARS scientific data. Production programs are
maintained under configuration control by CDHF operations personnel
and are tracked in the UARS Catalog. A production program may be used
in more than one production job. A production program processes data
from a specific instrument for a given data level or levels. The
input data time range is provided to the program by the UCSS PGINIT
service (see Section 3.1.1) at run time. Nominally, the input data
time range should correspond to the output data time range. All UCSS-
managed files used by a production program, including both input and
output files, are assigned dynamically using the UCSS subroutine
interfaces (see Section 3.2) at run time.

2.2.2 PROCESSING TIME RANGE

The nominal time span for production processing jobs is one day.
However, the UCSS provides the flexibility to support multiple day and
partial day processing. These processing alternatives are addressed
in the following sections.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.2.2.1 Default Input File Time Span

A nominal Level 1 production processing job reads 24 hours worth
of Level 0 data and produces a Level 1 file(s) spanning this same 24
hour period. The UCSS scheduler provides the actual time span to be
processed. However, in order to handle events spanning day
boundaries, the time span actually processed may not be exactly
24 hours. An event that crosses a day boundary can be processed into
one output file. If the event is to be associated with the start day
of the event, processing continues into the next day until the event
is complete and the output data is stored in the file for the start
day. Processing of the next day's data must ignore the partial event
at the beginning of the day. If the event is to be associated with
the stop day of the event, processing begins at the start of the event
in the previous day and the output data is stored in the file for the
stop day. Processing of the first day's data must ignore the partial
event at the end of the day. Using either alternative, the output
files do not correspond exactly to the nominal day boundaries, but the
output files from successive days processing would not overlap. The
catalog entries for these files indicate the actual time coverage.

The Level 1 file produced in this way is described in part by a
day number (UARS day) that corresponds to the number of days from the
launch date. The catalog entry for the file contains the UARS day
number associated with the file, the file start and stop times, and
other pertinent information. UARS day provides a means of identifying
the production processing run for a set of data.

In general, each subsequent level of processing uses files with
the same UARS day number as input and produces files with those same
characteristics as output. The time range for a file cataloged with a
given UARS day number must at least partially overlap the time range
of the Level 0 file with the same UARS day number.

2.2.2.2 Multiple Day and Sub-Day Processing

Some production processing jobs require input data that spans
several full days. The UCSS accommodates this type of processing job,
but assumes that the output files produced by such jobs adhere to the
UARS day conventions discussed above. For example, a production
processing job requiring 3 days of input data would produce three
output data files, each containing 1 day of data.

There are production processing job designs that would produce
more than one output file of a given type for a day. For example,
within a certain day, an instrument may have been cycled from a data-
taking state to a standby state and back to a data-taking state. The
developers of the production software may prefer to ignore standby
periods, which would appear to result, in this case, in two separate
output "files" of the same type for the given day. The UCSS assumes
that the two "files" produced for the same day are concatenated to

2-4

-y

UCSS PRODUCTION PROCESSING ENVIRONMENT

form a single file that is identified by the UARS day.

2.2.3 PRODUCTION INPUT
2.2.3.1 Input Files

All input files to a production job must be cataloged. Cataloged
files are read-only files that are assigned using catalog attributes
of the file such as instrument, UARS day number, and level.

Production programs can also use, as input, files created by a
previous program in the same production job. These files can be files
intended for subsequent cataloging or scratch files (see

Section 2.2.5).

All input files must be assigned with the OPENLO, OPENL3AT,
OPENL3S, OPENL3AL, OPENL3TP, OPENL3LP, ASGCAT, ASGCAL, ASGCOR, or
ASGSCR services (see Section 3.2). For Level 0, 3AT, 3AS, or 3AL data
and parameter files associated with Level 3AT or 3AL data, the UCSS
treats the data as if it were a single virtual file. The production
program does not need to be aware of how many physical files are to be
accessed; it sees the data as one logical file. The UCSS provides
read services for Level 0, 3AT, 3AS, and 3AL data and for parameter
files associated with Level 3AT or 3AL data, which have nominal levels
of 3TP and 3LP, respectively. The user is responsible for developing
read services for Level 1, Level 2, calibration, correlative, and
scratch files.

2.2.3.2 Program Parameters

Each production program can define and use up to 50 input
parameters which are specific to the program. These parameters are
passed from the UCSS scheduler to the production program by the PGINIT
service. PGINIT also supplies the processing time range and the
primary processing day to the program.

2.2.4 PRODUCTION OUTPUT
2.2.4.1 Cataloged Files

A production program creates files to be cataloged and can both
write to and read from these files. Level 3AT files are opened using
the OPENL3AT service (see Section 3.2.7). Level 3AL files are opened
using the OPENL3AL service (see Section 3.2.8). Level 3AS or 3BS
files are opened using the OPENL3S service (see Section 3.2.9).
Parameter files are opened using the OPENL3TP or OPENL3LP service (see
Sections 3.2.10 and 3.2.11). Level 1 and 2 files are assigned using
the ASGCAT service (see Section 3.2.2). The UCSS provides write

2=-5

UCSS PRODUCTION PROCESSING ENVIRONMENT

services for all type of Level 3A files. The user is responsible for
providing the write services for Level 1 and 2 files. The CLOSELF N
(see Section 3.2.24) and DASLID (see Section 3.2.25) services are used

to actually request cataloging of the Level 3A and the Level 1 or 2
files, respectively. Once a file is requested to be cataloged, it

cannot be modified by subsequent production programs.

The information used in creating catalog entries for data files
comes from two sources. The production program supplies initial file
attributes via the call to the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, or ASGCAT services. Additional attributes are provided by
the call to the CLOSELF or DASLID services. The UCSS supplies the
other attributes including the file location.

These catalog entries are not actually finalized in the Catalog
until the successful completion of the production job. If any of the
programs in a production job fails or terminates abnormally, then
catalog entries created by the programs in that production job are not
inserted into the Catalog. The corresponding files remain online for
further analysis.

2.2.4.2 User Status Files

User status files are temporary files that are maintained in the
UCSS-managed disk space. There are separate user status file
directories for each production job definition (e.g. HALOE Level 1
processing job). These files are maintained cyclically so that only
an operationally controlled number of versions are saved on the disk.
User status files are assigned using the ASGUSR service (see
Section 3.2.6). The user is responsible for providing any I/0
services required. User status files are deassigned using the DASLID
service (see Section 3.2.25).

2.2.4.3 Auxiliary Files

Auxiliary files are output files that are created in the user-
managed disk space of the instrument investigator responsible for the
job. These files are not cataloged. Auxiliary files cannot be used
as input to production jobs.

The instrument PI is responsible for insuring that there is
sufficient quota and free space available in the auxiliary directory
used by the production jobs. If sufficient disk space is not
available, then the production job cannot generate the auxiliary
files. 1In order to avoid job failure due to problems creating
auxiliary files, the production software must have sufficient error
detection logic to handle I/O errors encountered when processing
auxiliary files. Auxiliary files are not primary production
processing outputs. All primary production processing output files

2=6

UCSS PRODUCTION PROCESSING ENVIRONMENT

should be cataloged.

The only UCSS support of auxiliary files is the definition of the
logical name AUX DIRECTORY in each production job's runstream. This
logical name identifies the disk device and directory to be used to
create auxiliary files. It must be used by the program to specify the
device and directory when opening an auxiliary file. 1In addition, the
Fortran logical unit numbers 100 to 119 are reserved for I/O to
auxiliary files. Use of dedicated logical unit numbers is necessary
in order to prevent collisions with assignments made internally within
the UCSS services.

2.2.4.4 Program Summary Report

The UCSS produces a program summary report for each program
executed during the job. This report provides information about the
program including completion status, processing time range, input
parameters, input files and output files. The format of this report
is described in Figure 2-2. A wide discrepancy between an estimated
output file size and the actual file allocation is marked in the
Program Summary Report by an asterisk to the left of the output file
name.

Figure 2-2. Program Summary Report

PROGRAM SUMMARY REPORT
Ucss JoB ID: . . . JOB STEP NUMBER: . . . PROGRAM ID: . .
PROCESSING TIME RANGE: ... = ... UARS PRIMARY PROCESSING DAY: ...
INPUT PARAMETERS:
PARAMETER NAME PARAMETER VALUE

° . - .

CATALOGED INPUT FILES:

UARS CALIB SOURCE
LOGICAL FILE ID TYPE SUBTYPE LEVEL DAY VERS CYC ID ID
OUTPUT FILES:
UARS EST ALLOC
LOGICAL FILE ID TYPE SUBTYPE LEVEL DAY VERS CYC SIZE SIZE DISP
SCRATCH FILES:
EST ALLOCATED
LOGICAL FILE ID SIZE SIZE DISP SCRATCH FILE NAME
USER STATUS FILES:
USER STATUS
FILE NUMBER USER STATUS FILE NAME
ERROR MESSAGES:
PROGRAM START TIME: . . . PROGRAM STOP TIME: . .
PROGRAM COMPLETION STATUS: . . . PROGRAM CPU USAGE: . . .
DIRECT I/O COUNT: . . . BUFFERED I/O COUNT: . . .

PROGRAM COMPLETION COMMENTS: . .

* Asterisks mark wide discrepancies between allocation and estimate

2-8

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.2.4.5 Job Summary Report

The UCSS produces a job summary report at the end of each
production job. This report provides information about the job
including the job identifier, job completion status, job statistics,

input files, and output files. The format of this report is described
in Figure 2-3.

Figure 2-3. Job Summary Report

JOB SUMMARY REPORT

UCSS JOB ID: AAAAAAAAARAAARAARAAAAA CPU ID: AAAAA

UCSS VERSION: XXXXX UOAS VERSION: XXXXXX

JOB START TIME: DD-MMM-YYYY HH:MM:SS

JOB STOP TIME DD-MMM-YYYY HH:MM:SS

JOB COMPLETION STATUS: AAAA JOB CPU USAGE: DDD HH:MM:SS.CC
DIRECT I/O COUNT: NNNNNNNNNN BUFFERED I/O COUNT: NNNNNNNNNN

MAX WORKING SET SIZE: NNNNNNNNNN

JOB ERROR MESSAGES:

2.2.4.6 Error Messages

A production program can use the UCSS service ERRCDE (see
Section 3.3.1) to report and log any serious errors detected by the
program. These error messages are written to a UCSS log file and are
included on the program summary report.

2.2.5 GSCRATCH FILES

Scratch files are maintained in the UCSS-managed disk space.
They are created during a production job for the life of the job only.
They can be used to pass information between programs in a job or as a
scratch area. Scratch files can both be written and read by

2=9

UCSS PRODUCTION PROCESSING ENVIRONMENT

production programs. The ASGSCR service (see Section 3.2.5) must be

used to assign scratch files so that the UCSS can manage the disk "
allocation. The user is responsible for providing the I/0 services to
access scratch files. The DASLID service (see Section 3.2.25) is used

to deassign scratch files.

All scratch files associated with a job are deleted at the
successful completion of the job. Since the scratch files are not
deleted when a job reports a failed condition or when a system failure
occurs, they can aid in determining the cause of a failure and in
recovering the job if the programs were written to take advantage of
this capability.

2.2.6 CONDITIONAL PROCESSING

A production program exits with a condition code that can be
tested by job control statements. This condition code is set using
the PGTERM service (see Section 3.1.2). The results of these tests
can be used to control further job execution (e.g., which program to
execute next). The message number, associated message text, and
mnemonic name for each message must be defined by each investigator
supplying production software. The Virtual Address Extension (VAX)
Virtual Memory System (VMS) message utility should be used to define
the message number and mnemonic in order to generate a standard VMS
condition code. See the VAX VMS Utility Reference Manual for further
information.

2.3 PRODUCTION SCHEDULING

Production scheduling is the routine scheduling of scientific
data processing jobs. The UCSS provides scheduling tools which are
designed to aid the operations personnel in efficient and timely
scheduling of production jobs. The UCSS provides automatic scheduling
of production jobs over a specified time period. The scheduling tools
also allow the operator to manually schedule individual production
jobs. The primary functions of the scheduling software are to insure
availability of the resources required by the production jobs and to
submit the jobs for execution at the appropriate time.

The UCSS scheduler schedules production jobs based on information
contained in production program catalog entries, production job
definitions and scheduling requests. All of the scheduling
information is maintained under configuration control. The UCSS
scheduler uses this information to determine which jobs need to be
run. These data structures are maintained by operations personnel,
but rely heavily upon information supplied by the instrument PIs. The
following sections describe each of these structures.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.3.1 PRODUCTION PROGRAM CATALOG ENTRIES

The UCSS tracks all versions of the production programs in the
UARS Catalog. A program catalog entry identifies the program name,
program version, load module location, the memory and CPU resources
required by the program, and other important information. New
versions of production programs are cataloged upon approval by the
UARS Project.

The following information must be supplied in order to create
program catalog entries:

- Program identification, including program name, program
version, and instrument identifier

- User status file information

- Resource usage information including estimated CPU usage,
wall clock time, and working set size

- Auxiliary file flag indicating whether the program needs to
access auxiliary files

- Required input file specifications (type, subtype, level, and
relative time range for each required input file)

- Output file requirements (sizing estimates)
- Orbit and attitude data requirements

- Scratch file requirements (sizing estimates)

2.3.2 PRODUCTION JOB DEFINITIONS

A production job definition defines the basic structure of a
production job. It identifies the production programs that are
invoked by the job, the input data requirements, and the skeletal
runstream including any special job control needed to test program
exit status.

The following information must be supplied in order to define a
production job to the scheduling software:

- Job identification, including job name and version

- Orbit and attitude data requirements (predicted, definitive,
best, or none)

UCSS PRODUCTION PROCESSING ENVIRONMENT

- Auxiliary file disk and directory
- DCL runstream defining the job

- Default program parameter values

2.3.3 SCHEDULING REQUESTS

A scheduling request is a request to run a specific production
job for a given time period. It identifies the production job, the
applicable time range, and parameters indicating execution frequency
and times allowed. It also specifies the version rules to be used for
the input and output cataloged files. Optionally, program parameters
can be modified.

The following information must be supplied in order to schedule
production processing:

- Job identification, including job name and version
- Start and end date/time of the processing period

- 1Input data file version information

- Modified program parameter values

- Auxiliary file output location

- Orbit and attitude data requirements (predicted, definitive,
best, or none)

The UCSS scheduler uses the scheduling request to identify which
jobs to run. The information in the scheduling request is used in
conjunction with the production job definition to identify the input
data required, the output files to be produced, the program
parameters, and the time range for each production job to be
scheduled. This information is used to create the expanded production
job runstream for each job. The scheduler stages required input files
to insure that the data is available on magnetic disk. The scheduler
submits jobs for execution when the required resources are available
and when the constraints on the job can be satisfied.

2.4 UCSS PRODUCTION RECOVERY GUIDELINES

It is expected that there will be times during the operation of
the CDHF that the system will halt while a variety of activities are
underway, including the processing of production jobs. The UCSS 1is

2-12

UCSS PRODUCTION PROCESSING ENVIRONMENT

responsible for detecting and recovering from this kind of problem
only for UCSS specific functions such as production scheduling and
catalog management. The recovery of the production jobs is initiated
by the UCSS but relies on PI-developed recovery software and
instructions. PI-developed recovery systems must include the software
and control language necessary to confirm the existence of all
required files and data, eliminate questionable files, and reinitiate
processing. Several options are available to the production
processing software. developers for this capability. These are
discussed in the following sections.

2.4.1 PRODUCTION JOB RERUN

One option available to the production processing developers is
to do nothing; recovery means simply deleting all partially completed
files and rescheduling production processing from the beginning. This
option is desirable for those production jobs that can run to
completion without requiring massive CDHF resources and this avoids
the expense of developing complicated recovery systems.

Another option is to restart the production job at a particular
job step. 1In this case the state of the files generated by the job
must be restored to the restart point and any files created at or
beyond that point must be deleted.

Both options are available through the UCSS Job Recovery
function.

2.4.2 OPERATING SYSTEM CHECKPOINT/RESTART

For those production jobs that may require a significant fraction
of a day to complete, some means of periodically saving intermediate
results is desirable. One option that may be available is the use of
checkpoint/restart procedures provided with the operating system and
utilities. Periodically taking file checkpoints during processing
would cause the state of the production job to be saved to that point
in processing. If a system failure were to occur, a UCSS invoked
restart routine could reinitiate the processing of that job from the
point of the last checkpoint. It should be noted that a proven vendor
provided checkpoint/restart capability is not available with the DEC
VAX system. Moreover, this type of capability can, when available,
consume significant amounts of system resources. Given the expected
probability of system failure, it may not be cost effective to use the
vendor provided checkpoint/restart capability.

UCSS PRODUCTION PROCESSING ENVIRONMENT

2.4.3 USER SUPPLIED RECOVERY

The remaining options for production job recovery rely
exclusively on software and control language produced by the
developers of the production job. Two alternatives to this option are
apparent: multiple-program production jobs and periodic file
closings. There are "gray" areas between these options as well. A
UCSS production job may consist of a sequence of programs, where each
program produces either scratch product files used in subsequent
programs of the job, or a separate file for one of the components of
the output product (e.g., specie concentrations). Production job
recovery in this case could be implemented by determining which file
had been partially completed among the sequence of files that should
have been produced. That file would be eliminated and the
corresponding job step reinitiated. Alternately, the production job
developers may elect to use a single program that produces one or more
files. An approach to recovery in this situation is to periodically
execute a Fortran CLOSE on the currently open files. This saves the
results produced to that point in the processing. The file(s) may
subsequently be reopened and used for further processing. On recovery
from system failure, the user developed software would need to OPEN
the partially completed file(s), determine the point in processing at
which the failure occurred, and reinitiate processing.

It should be reiterated that the last two recovery schemes
described above rely heavily upon PI-developed software. The UCSS
would detect the system failure condition, provide for recovery of
UCSS functions, and invoke the appropriate PI-developed production
processing recovery job. In general, production processing recovery
jobs are required for each level of processing, and perhaps more than
one may be required for a given level of processing.

2.5 PRODUCTION PROGRAM TESTING

The UCSS provides the capability of testing production programs
while in the production processing environment. This test mode should
be used after completion of initial testing of production programs
using the UCSS simulated services (see Section 4).

The UCSS scheduling tools can be used to create catalog entries
for test programs. Test programs do not have to be configuration-
controlled. A test program can remain in the user directory so that
it can be modified without updating the catalog entry each time. A
job definition (see Section 2.3.2) that uses the test program must be
created. To run the test job the user submits a scheduling request to
CDHF operations. .

Any job that includes a test program is defined as a test job.
All of the output catalog products are identified as test files.

CHAPTER 3

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

This section provides the detailed calling sequences for the UCSS
production software support services. These services are designed for
use by production programs run in the production environment on the
CDHF.

The UCSS production software support services are divided into
three areas. Section 3.1 describes the production control services
which include production program initialization and termination
routines. The file access services are discussed in Section 3.2.
Section 3.3 describes the utility services. Appendix A documents the
UARS date and time format (UDTF) that is used in many of the calling
sequences. Appendixes B and C provide examples of the usage of the
production software support services. Appendix F provides information
about error handling.

3.1 PRODUCTION CONTROL ROUTINES
3.1.1 PROGRAM INITIALIZATION (PGINIT)

PGINIT provides the mechanism for passing input parameters to a
production program. The parameters are supplied to the production job
by the scheduling software. PGINIT also initializes the production
environment for the program and updates the UCSS production accounting
tables with the initial program statistics. PGINIT must be called at
the start of each production program.

The processing start and stop times provided by PGINIT define the
expected time range of the output data to be generated by the
production program. For a nominal UARS production job, these times
would specify a 24 hour period startlng at 00 Greenwich Mean
Time (GMT).

PGINIT supplies the user defined parameters to the program
through an ASCII table. The dimension of this table is specified by
the optional argument PARAM TBL_SIZE. A maximum of 50 parameters can
be specified. The default is 20 parameters if PARAM TBL_SIZE is not

3=l

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

given. A table entry consists of two items, the name of the parameter

and the parameter value. The parameter values are provided to the L
scheduler at job definition time or, optionally, at schedule request
time (see Section 2.3). No specific order of the table entries should

be assumed.
The calling sequence for PGINIT is as follows:

CALL PGINIT (PARAM TABLE, STRT_DATTIM, STOP_DATTIM, UARS_DAY
[, PARAM TBL_SIZE])

ARGUMENT TYPE I/0 DEFINITION
PARAM TABLE CHAR*20 o A table used to pass parameters for
(2,%) control of processing. Each entry in

the table consists of a pair, a
parameter name and its corresponding
value. -‘Parameters are specific to a
particular production program. The
size of this table may be from 1 to
50 entries as specified by

PARAM TBL_SIZE.

STRT_DATTIM I*4(2) (0] Start date and time of nominal
processing range in UDTF

STOP_DATTIM I*4(2) 0 Stop date and time of nominal
processing range in UDTF

UARS_DAY I*4 0 First UARS day (DDDD) for catalog
output from this program

PARAM TBL_SIZE 1I%*4 I Specifies the size of PARAM TABLE

The last argument, PARAM TBL_SIZE, is optional. If it is not
specified, the size of PARAM TABLE is CHAR*20(2,20) by default.
PARAM TBL SIZE may be from 1 to 50.

3.1.2 PROGRAM TERMINATION (PGTERM)

PGTERM terminates the production program. The production program
is responsible for determining the success or failure of the
processing and reports this determination to PGTERM. PGTERM updates
the UCSS accounting statistics with program completion information and
produces a standard format program summary report (see Figure 2-2) to
a disk file. PGTERM must be called at the end of execution of each
production program. Any program that does not call PGTERM is _
automatically marked with a failed status by the UCSS software. This
precaution is necessary so that the UCSS can properly handle
uncontrolled program aborts.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

PGTERM sets the user program's exit condition code to the value
supplied in COND_CODE. If the program fails, the condition code
uniquely identifies the reason for the failure. 1In the case of a
successful run, this parameter can be used to control the subsequent
program flow via the use of conditional job control language.

The calling sequence for PGTERM is as follows:

CALL PGTERM (PASS_FAIL, COND_CODE, PROG_COMMENT)

ARGUMENT TYPE I/0 DEFINITION
PASS_FAIL CHAR*4 I Program completion status
'PASS' = successful completion
'"FAIL' = unsuccessful completion
COND_CODE I*4 I A VMS condition code specifying

additional status information about
the program completion

PROG COMMENT CHAR*80 i | A character string supplied by the
- production program to indicate any
additional information. This message
will be displayed on the program
summary report.

3.2 FILE ACCESS

This section describes the production software support services
designed to provide access to UCSS-managed files. Services are
provided to access all levels of instrument data, calibration files,
UARS day oriented correlative files, user status files, and scratch
files. Table 3-1 summarizes the use of the file access services by
file type.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-1. Calling Routine Matrix
FILE FILE DE-

DATA TYPE ASSIGN OPEN READ WRITE CLOSE ASSIGN
Level 0

-Engineering N/A OPENLO READLO N/A CLOSELF N/A

-Instrument N/A OPENLO READLO N/A CLOSELF N/A

-Onboard

Computer N/A OPENLO READLO N/A CLOSELF N/A
-Quality N/A OPENLO READLO or N/A CLOSELF N/A
QUALRD

-Spacecraft N/A OPENLO READLO N/A CLOSELF N/A
Level 1 ASGCAT * * * * DASLID
Level 2 ASGCAT * * * * DASLID
Level 3AT N/A OPENL3AT| READL3AT| WRITEL3AT| CLOSELF N/A
Level 3AS N/A OPENL3S READL3S WRITEL3S CLOSELF N/A
Level 3BS N/A OPENL3S READL3S WRITEL3S CLOSELF N/A
Level 3AL N/A OPENL3AL| READL3AL| WRITEL3AL| CLOSELF N/A
Level 3LP N/A OPENL3LP| READL3LP| WRITEL3LP| CLOSELF N/A
Level 3TP N/A OPENL3TP| READL3TP| WRITEL3TP| CLOSELF N/A
Calibration ASGCAL * * * * DASLID
Correlative ASGCOR * * * * DASLID
Scratch ASGSCR * * * * DASLID
User Status ASGUSR * * * * DASLID
Auxiliary * * * * * *

* =

PI-SUPPLIED

The UCSS provides open, read, and close services for Level 0

data.

The Level 0 read services provide a time range read capability

so that the user does not have to be concerned with physical file

boundaries.

A special service is available to read quality data.

Appendix D provides a description of the Level 0 file record formats.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The UCSS provides open, read, write, and close services for
Level 3AT data. A time range read capability is provided for the
Level 3AT data. The close service allows the user to inform the UCSS
of the file's disposition and furnishes the capability to catalog new
Level 3AT files. Appendix E provides a description of the Level 3AT
data file formats.

The UCSS provides open, read, write, and close services for
Level 3AS and Level 3BS solar data. A time range read capability is
provided for the Level 3AS and Level 3BS data. The close service
allows the user to inform the UCSS of the file's disposition and
furnishes the capability to catalog new Level 3AS and Level 3BS files.
Appendix E provides a description of the Level 3AS and Level 3BS data
file formats.

The UCSS provides open, read, write, and close services for
Level 3AL data. The read service provides the ability to retrieve
data for a specified latitude band over a time range. The close
service allows the user to inform the UCSS of the file's disposition
and furnishes the capability to catalog new Level 3AL files.
Appendix E provides a description of the Level 3AL data file formats.

The UCSS provides open, read, write and close services for
Level 3TP data, i.e. parameter data associated with Level 3AT files.
A time range read capability is provided for the Level 3TP data. The
close service allows the user to inform the UCSS of the file's:
disposition and furnishes the capability to catalog new Level 3TP
files. Appendix E provides a description of the Level 3TP data file
formats.

The UCSS provides open, read, write and close services for
Level 3LP data, i.e. parameter data associated with Level 3AL files.
A time range read capability is provided for the Level 3LP data. The
close service allows the user to inform the UCSS of the file's
disposition and furnishes the capability to catalog new Level 3LP
files. Appendix E provides a description of the Level 3LP data file
formats.

The UCSS provides services to assign and deassign Level 1,
Level 2, correlative, calibration, user status, scratch, and
orbit/attitude files. For input cataloged files, the assign routines
identify the file specified using the supplied attributes, insure that
it is on magnetic disk, and associate the logical file identifier with
the physical file name. For new output files, the UCSS assign
routines reserve the requested file space on a UCSS-managed disk,
generate a file name, and associate the full file specification with
the logical file identifier. For existing output files, the assign
services identify the physical file to be accessed. The user program
issues the open/read/write/close calls for Level 1, Level 2,
correlative, calibration, user status, and scratch files. The logical
file identifier supplied at assign time must be used to open the file
since the program does not know the physical location of the data.
The logical unit number returned at assign time must also be used when

3=5

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

calling the Fortran I/0 services to prevent conflict with.any logical
unit numbers used internally by the production service routines. The
deassign service is called to release the file and, optionally, to
catalog a file (Level 1 or Level 2 only). The user must specify the
file's disposition.

The user's program is responsible for issuing the I/O service
calls to access auxiliary files. The UCSS only provides the logical
name that specifies the disk and directory name where the auxiliary
files are to be created. Logical unit numbers 100 to 119 are reserved
for use in accessing auxiliary files (see Section 2.2.4.3).

3.2.1 OPEN LEVEL O DATA (OPENLO)

The OPENLO routine is used to initiate read access to Level 0
data. The production program supplies the data type and the time
range of the Level 0 data required for Level 0 to 1 processing. The
time range required should be calculated relative to the processing
time range provided by PGINIT. OPENLO identifies the physical Level 0
files containing the data covering the requested time range, insures
that the files are on magnetic disk, and opens the files for read
access in shared mode. The production program can subsequently use
the logical file identifier (LID) to read any data in the time range
specified by the open calling sequence parameters.

The calling sequence for OPENLO is as follows:
CALL OPENLO (DATA_TYPE, STRT_DATTIM, STOP_DATTIM, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA TYPE CHAR*12 I Level 0 data type
- 'ACRIM'
'CLAES'
'HALOE'
'"HRDI!
'ISAMS'

'MLS'

IPE:MI
'SOLSTICE'
'SUSIMA!
'SUSIMB'
'WINDII'
'ENGINEERING'
'OBC!
'QUALITY'

' SPACECRAFT'

| {1 {1 1 | A 1 Y |

STRT DATTIM I*4(2) | Start of processing date and time range
- in UDTF

3=6

ARGUMENT TYPE 1/0 DEFINITION

STOP_DATTIM I*4(2) I Stop of the processing date and time
range in UDTF :

LID CHAR*16 I Logical file identifier associated with
the virtual file

STATUS I*4 o} Status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA NODATARECS (RSS) - Physical file
without data exists in user's
processing range

PFA_NOOLDFILE - No data found or held
file does not exist

PFA_NOOPTDATA - No optional data
available

PFA_OPTFILMISS - Missing one or more
optional files in a multiday range

PFA_OVRLPTIME - Two physical files
have overlapping times

PFA_SOMEFILSTGD - File was staged

3.2.2 ASSIGN CATALOGED FILE (ASGCAT)

ASGCAT assigns a logical file identifier (LID) to a physical
cataloged file for input or to a Level 1 or 2 file for output from a
production program. ASGCAT provides a logical unit number (LUN) that
can be used to perform Fortran I/O.

This routine provides access to existing files which include
cataloged files and files that have been created by a previous job
step and that are to be cataloged subsequently. For cataloged files,
ASGCAT identifies the file using the input parameters, stages the file
to magnetic disk if necessary, and associates the file name with the
specified logical file identifier. The production program must open
the cataloged file for read-only access. To access a file that was
created by a previous program in the same job and that has not been
cataloged, the LID must be the same as the one used by the program
that created the file. Files that have not yet been cataloged can be
modified.

ASGCAT also provides access to new files. It reserves disk space
on a UCSS-managed disk, generates a unique file name, and associates
the logical file identifier with the physical file name. The
production program is responsible for the actual creation of the file.
The logical file identifier must be used to open the file. The
logical unit number can be used to perform Fortran I/O.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for ASGCAT is as follows:

CALL ASGCAT (UARS_DAY, DATA_TYPE, LEVEL, SUBTYPE, OLD NEW, SIZE, LID,
LUN, STATUS)
ARGUMENT

TYPE I/0 DEFINITION

UARS_DAY I*4 I UARS day number (DDDD)

DATA TYPE CHAR*12 I Data type
Instrument identifier for Level 1 or
for Level 2 data:

'"CLAES'

'HALOE"

'"HRDI'

'ISAMS!

'MLS'

IPEMI

'SOLSTICE'

'SUSIM'

'"WINDII'

o nwwnnn

LEVEL CHAR*3 I ' Data level
IO '
|1]
l2 !
'3AS"
'3AL'
'3AT!
'3BS!
I3Bl
'3LP'
'3TP"

Level 0
Level 1
Level 2
Level 3AS
Level 3AL
Level 3AT
Level 3BS
Level 3B
Level 3LP
Level 3TP
no level applicable

Subtype of data (dependeﬁt on the
DATA_TYPE and LEVEL). Supply blank
string if no subtype.

SUBTYPE CHAR*12 I

OLD_NEW CHAR*4 I File existence flag
'NEW ! new file
'OLD ' existing file

'HELD' held file

Estimated size of data file in blocks.
This argument is only required when
creating a new file.

SIZE I*4 I

LID

LUN

CHAR*16

I*4

Logical

Logical

file identifier

unit number

ARGUMENT TYPE I/0 . DEFINITION

STATUS I*4 (0] Status code
SS$_NORMAL - Normal return
PFA_NOOLDFILE - No data found
PFA NOOPTDATA (PDS) - Optional file
not available
PFA_SOMEFILSTGD - File was staged

3.2.3 ASSIGN CORRELATIVE FILE (ASGCOR)

ASGCOR provides Fortran-callable read access to UARS day oriented
correlative data. It identifies the file using the input parameters,
insures that it is on magnetic disk, and associates the logical file
identifier with the physical file name. The unique logical unit
number should be used to perform Fortran I/0 and the logical file
identifier must be used to open the file. Correlative files must be
opened for read only access. The user's program is responsible for
issuing the read.

The calling sequence for ASGCOR is as follows:

CALL ASGCOR (SOURCE, SUBTYPE, UARS DAY, LID, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION

SOURCE CHAR*12 I Source of correlative data

SUBTYPE CHAR*12 I Subtype of data. Supply blank string
if no subtype

UARS_ DAY I*4 I UARS day number assigned to identify
the correlative file

LID CHAR*16 I Logical file identifier

LUN I*4 0] Logical unit number

STATUS I*4 o Status code

SS$_NORMAL - Normal return

PFA_NOOLDFILE - No data found

PFA_NOOPTDATA (PDS) - Optional file
not available

3.2.4 ASSIGN CALIBRATION FILE (ASGCAL)

ASGCAL assigns a logical file identifier (LID) to a cataloged
calibration file for input or to a calibration file for output from a
production program. It returns a unique logical unit number (LUN)
that can be used to perform FORTRAN I/0 on the file. Calibration
files are those user-generated, instrument-oriented files of data that

3=9

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

are brought into the CDHF, placed under configuration control, and
made available for production processing.

ASGCAL provides access to existing calibration files, namely
cataloged files and files that have been created by a previous job
step and are to be cataloged subsequently. For cataloged calibration
files, ASGCAL identifies the file using the input parameters, stages
the file to magnetic disk, if necessary, and associates the file name
with the specified LID. The production program must open the
cataloged for read-only access. To access a calibration file that was
created by a previous program in the same job, and that has not yet
been cataloged, the LID must be the same as the one used by the
program that created the file. Files that have not yet been cataloged
can be modified. Since calibration tables are time-indexed but are
not always generated on a daily basis, a parameter is provided that
allows the user to select the calibration file closest (either before,
after, or nearest) to the processing day.

ASGCAL also provides access to new calibration files. It
reserves disk space on a UCSS-managed disk, generates a unique file
name, and associates the LID with the physical file name. The
production program is responsible for the actual creation of the file.
The LID must be used to open the file.

The calling sequence for ASGCAL is as follows:

CALL ASGCAL (SUBTYPE, CALB_ID, LEVEL, UARS_DAY, DMATCH, LID, LUN,
STATUS, SIZE)

ARGUMENT TYPE I/0 DEFINITION

SUBTYPE CHAR*12 I Instrument ID associated with
calibration data
'CLAES'
'"HALOE'
'"HRDI'
'ISAMS!
'MLS'
IPEMI
'SOLSTICE'
'SUSIM'
'"WINDII®

CALB_ID CHAR*12 L Calibration table identifier

LEVEL CHAR*3 I Data level associated with the
calibration table
L0 Level 0
1 ¢ Level 1
L R Level 2
'3AL! Level 3AL
'3AS! Level 3AS
'3BS! Level 3BS

LI I I I (I

3-10

ARGUMENT TYPE I/0 DEFINITION

'3AT' = Level 3AT
' ' = no level applicable
UARS_DAY I*4 I/0 UARS day number (DDDD). Actual day

returned for input file.
0 = UARS day not applicable

DMATCH CHAR*4 I Day match criteria if file is old (Not
used if UARS DAY is not applicable)
'EXCT' = Locate file for the
specified day

'PREV' = Locate file for the
specified day or for the
closest day less than the
specified day

'NEXT' = Locate file for the
specified day or for the
closest day greater than the
specified day

'NEAR' = Locate file for the closest

day to +he =necified day
0ld new flag if file is new or hela

'NEW' = New file

'HRTN' = Held file
LID CHAR*16 I Logical file identifier
LUN I*4 o} Logical unit number
STATUS I*4 o] Status code

SS$_NORMAL - Normal return

PFA NOOLDFILE - No data found

PFA NOOPTDATA (PDS) - Optional file
not available

SIZE I*4 I Estimated size of data in blocks. This
argument is only required when creating
a new file.

3.2.5 ASSIGN SCRATCH FILE (ASGSCR)

ASGSCR provides access to scratch files. It reserves disk space
for the file on a UCSS-managed disk and associates the logical file
identifier with the physical scratch file name. The production
program must use the logical file identifier to open the scratch file.
A unique logical unit number is provided that must be used to perform
Fortran reads and writes. Scratch files exist only for the duration
of the production job. Upon successful completion of the production
job, all scratch files are deleted. Scratch files are not deleted
when a production job fails so that the files can be used to determine
the reason for the failure. All scratch files must be assigned using

3-11

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

the ASGSCR routine to allow proper management of the UCSS production
processing storage space.

Scratch files can be used to pass information from one program to
another in the same production job. To access a scratch file that was
created by a previous program, the same LID must be used. For
example, PROGRAM1 created a 'NEW' scratch file with LID 'XYZ'. If
PROGRAM2 needs to read the same scratch file, the ASGSCR parameters
must specify that the file is 'HELD' and that the LID is 'XYZ'. If
the same LID is used to access more than one new scratch file in the
same job, then no subsequent program can use the LID to access the
older scratch file(s).

The calling sequence for ASGSCR is as follows:
CALL ASGSCR (SIZE, OLD_NEW, LID, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION

SIZE I*4 I Estimated size of data file in blocks.
This argument is required only when
creating a new file.

OLD_NEW CHAR*4 I File existence flag
'NEW ' = new file
'"HELD' = held file
LID CHAR*16 I Logical file identifier
LUN I*4 o} Logical unit number
STATUS I*4 o] Status code

SS$_NORMAL - Normal return
PFA_NOOLDFILE - File not found

3.2.6 ASSIGN USER STATUS FILE (ASGUSR)

ASGUSR assigns the user-supplied LID to a user status file so
that the production program can write to it. User status files are
maintained in a directory associated with a specific type of job.
These files are maintained cyclically so that the oldest version is
deleted when a new version is created. The production program must
use the logical file identifier to open the user status file. A
unique logical unit number is provided that must be used to perform
Fortran writes. The user's program is responsible for issuing the
actual writes.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for ASGUSR is as follows:

CALL ASGUSR (LID, FILE_NUM, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 I Logical file identifier
FILE_NUM I*4 I User status file number. A job may

access a number of status files up to a
maximum specified in the job

definition.
LUN I*x4 (o} Logical unit number
STATUS I*4 0} Status code

SS$_NORMAL - Normal return
PFA_NOOLDFILE - File not found

3.2.7 OPEN LEVEL 3AT DATA (OPENL3AT)

The OPENL3AT routine is used to initiate access to Level 3AT
data.

To open for reading, the production program supplies the file
type and the time range of the Level 3AT data to be read. OPENL3AT
identifies the physical Level 3AT files required, insures that the
files are on magnetic disk, and opens the files for read access in
shared mode. OPENL3AT returns the base index within the UARS standard
data array and maximum number of points to indicate the lowest index
and maximum number of points available for the time range of the data.
The production program must subsequently use the logical file
identifier to read any data in the time range specified by the open.
Appendix E describes the Level 3AT file format.

For output files, OPENL3AT reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
base index and maximum number of points parameters are used to
determine the record size. The production program must use the.LID
when writing the Level 3AT record.

The calling sequence for OPENL3AT is as follows:

CALL OPENL3AT (DATA_TYPE, SUBTYPE, STRT_DATTIM, STOP_DATTIM, UARS_DAY,
OLD_NEW, SIZE BASE INDEX, MAX POINTS LID, STATUS)

ARGUMENT TYPE I{O _ DEFINITION
DATA TYPE CHAR*12 I Instrument identifier:
= 'CLAES'
= 'HALOE'

3-13

ARGUMENT TYPE I/0 DEFINITION

'"HRDI'
'ISAMS !
'MLS'
IPEMI
'WINDIT'

o nmnn

SUBTYPE CHAR*12 I Type of data. The set for each
instrument is defined by the
investigator.

STRT DATTIM I%*4(2) 1 Start date and time in UDTF. Required
only when accessing cataloged Level 3AT
data.

STOP_DATTIM I*4(2) I Stop date and time in UDTF. Required
only when accessing cataloged Level 3AT
data.

UARS_DAY I*4 X UARS day number (DDDD). Required only
when accessing a new or held Level 3AT
file.

OLD_NEW CHAR*4 I File existence flag
'NEW ' = new file
'oLD ! existing file
'"HELD' held file from previous job
step

SIZE I*4 L Estimated size of data file in blocks.
This argument is required only when
creating a new file.

BASE INDEX I*4 I/0 Start index (lowest) into the standard
data array to be included in the file
Input when creating a new file. Output
when accessing an existing file.

MAX POINTS I*4 I/0 Maximum number of data points reported
in the data array. Input when creating
a new file. Output when accessing an
existing file.

LID CHAR*16 I Logical file identifier

STATUS I*x4 0] Open status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
physical file in user's processing
range

PFA_NOOLDFILE - No data found or file
does not exist

ARGUMENT TYPE I/0 DEFINITION

PFA_NOOPTDATA - No optional data
available

PFA OPTFILMISS - One or more optional
file(s) missing in the time range

PFA_OVRLPTIME - Two physical files
have overlapping data

3.2.8 OPEN LEVEL 3AL DATA (OPENL3AL)

The OPENL3AL routine is used to initiate access to Level 3AL
data.

To open for reading, the production program supplies the file
type and the subtype of the Level 3AL data to be read. The time range
of the data to be retrieved is supplied in UDTF. OPENL3AL identifies
the physical Level 3AL files required, insures that the files are on
magnetic disk, and opens the first file for read access in shared
mode. OPENL3AL returns the base index and maximum number of points to
indicate the lowest index and maximum number of points available for
the time range of the data. The minimum and maximum latitudes are
also returned to identify the latitude range of the available data for
the specified time range. . The production program must subsequently
use the logical file identifier to read any data in the time range
specified by the open. Appendix E describes the Level 3AL file record
formats.

For output files, OPENL3AL reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
base index and maximum number of points parameters are used to
determine the Level 3AL record size. The production program must use
the LID when writing the Level 3AL records.

The calling sequence for OPENL3AL is as follows:
CALL OPENL3AL (DATA_TYPE, SUBTYPE, STRT_DATTIM, STOP_DATTIM, UARS_DAY,
OLD_NEW, SIZE, BASE_ INDEX, MAX _ POINTS MAX LAT,
MIN_ “LAT, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA_ TYPE CHAR*12 I Instrument identifier:
'CLAES'

'"HRDI'

'ISAMS '

'MLS'

'PEM'

'WINDII'

SUBTYPE CHAR*12 I Type of data. The set for each
instrument is determined by the
investigator.

315

ARGUMENT TYPE I/0 DEFINITION

STRT DATTIM 1*4(2) I Start date and time in UDTF. Required
only when accessing cataloged Level 3AL o
data.

STOP_DATTIM I*4(2) i Stop date and time in UDTF. Required
only when accessing cataloged Level 3AL
data.

UARS_ DAY I*4 I UARS day number (DDDD). Required only
when accessing an uncataloged Level 3AL
file.

OLD_NEW CHAR%*4 I File existence flag

'NEW ' = new file

'OLD ' = existing file

'HELD' = held file from previous job
step

SIZE I*4 I Estimated size of data file in blocks.

This argument is required only when
creating a new file.

BASE_INDEX I*4 I/0 Start index (lowest) into the standard
data array to be included in the file.
Input when creating a new file. Output
when accessing an existing file.

MAX_ POINTS I*4 I/0 Maximum number of data points reported
in the data array. Input when creating
a new file. Output when accessing an
existing file.

MAX LAT REAL*4 0 For existing files, the highest
latitude value available for the
physical files spanned by the requested
time range (between -88. and 88.)

MIN LAT REAL*4 0 For existing files, the lowest latitude
value available for the physical files
spanned by the requested time range
(between -88. and 88.)

LID CHAR*16 I Logical file identifier

STATUS I*4 0 Open status code

SS$_NORMAL - Normal return

PFA CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
physical file in user's processing
range

PFA_NOOLDFILE - No data found or file
does not exist

3-16

ARGUMENT TYPE I/0 DEFINITION

PFA NOOPTDATA - No optional data
available

PFA_OPTFILMISS - One or more optional
file(s) missing in the time range

PFA_OVLPTIME - Two physical files
have overlapping times

3.2.9 OPEN LEVEL 3S DATA (OPENL3S)

The OPENL3S routine is used to initiate access to Level 3AS and
3BS data.

To create a new Level 3 solar data file, the calling program
supplies the instrument ID, data level, UARS day number, starting wave
length, wave length units, and the number of wave length bins. The
number of wave length bins is used to calculate the Level 3 solar data
record size. OPENL3S reserves the necessary UCSS-managed disk space
(as specified in SIZE), generates a unique file name and opens the
file.

To open a cataloged Level 3 solar data, the calling program
supplies the instrument ID, data level, and UARS day range. OPENL3S
uses these attributes to identify the required Level 3 solar data
files, opens the first physical file, and returns the base wave length
in nanometers as well as the number of wave length bins available in
the data.

The calling sequence for OPENL3S is as follow:
CALL OPENL3S (DATA_TYPE, LEVEL, START DAY, STOP_DAY, UARS_DAY,

OLD_NEW, SIZE, BASE WVLNGTH, MAX VALUES WVLNGTH_UNITS,
LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION
DATA TYPE CHAR*12 I Instrument identifier:
= 'SOLSTICE'
= 'SUSIM'
LEVEL CHAR*3 1 Data level:
= '3AS'
= '3BS!
START_ DAY I*4 I The first UARS day of a range from

which data may be subsequently read
Required only when accessing cataloged
Level 3AS or 3BS data

STOP_DAY I*4 I The last UARS day of a range from which
data may be subsequently read

3=17

ARGUMENT

UARS_DAY

OLD_NEW

SIZE

BASE_WVLNGTH

MAX_VALUES

WVLNGTH_UNITS

LID

STATUS

TYPE 1/0
I*4 1
CHAR*4 I
I*4 I
REAL*4 1I/0
I*4 1/0
CHAR*8 1I/0
CHAR*16 I
I*4 o)

DEFINITION

Required only when accessing cataloged
Level 3AS or 3BS data

UARS day number (DDDD). Required only
when accessing a new or uncataloged
file.

File existence flag:

'NEW ' = new file

'OLD ' = old file

'HELD' = held file from previous job
' step

Estimated size of data file in blocks.
This argument is required only when
creating a new file.

The wavelength associated with the
first value to be retrieved or written
Input when creating a new file. Output
when accessing an existing file.

Maximum number of data values to be
written or retrieved. Input when
creating a new file. Output when
accessing an existing file.

Indicates the unit of BASE _WVLNGTH. On
output, will only be 'NM'. Possible
values are:

'NM' - For nanometers, the standard
bin size

'STANDARD' - Equivalent to 'NM'

'A' - For angstroms, calculated as
the standard wavelength values
times 10

'MICRON' - Calculated as the standard

wavelength value times 1.E-03

'CM' - For centimeters, calculated as
the standard wavelength value times
1.E-07

Logical file identifier

Open status condition code

SS$_NORMAL - Success

PFA_CLSEEROLD - Error closing file

PFA_NODATARECS - No data records in
file

PFA_NOOLDFILE - No old fileor file
does not exist

PFA_NOOPTDATA - No optional data
available ‘

3-18

ARGUMENT TYPE I/0 DEFINITION

PFA_OPTFILMISS - One or more optional
files missing

PFA_ OVLPTIME - Two physical files
have overlapping times

3.2.10 OPEN LEVEL 3TP DATA (OPENL3TP)

The OPENL3TP routine is used to initiate access to Level 3AT
parameter files, also known as Level 3TP files.

To open for reading, the production program supplies the file
type and the time range of the Level 3TP parameter data to be read.
OPENL3TP identifies the physical Level 3TP files required, insures
that the files are on magnetic disk, and opens the files for read
access in shared mode. OPENL3TP returns the maximum number of 32-bit
words to be contained in a parameter file record. The production
program must subsequently use the logical file identifier to read any
parameter data in the time range specified by the open. Appendix E
describes the Level 3TP file format.

For output files, OPENL3TP reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
maximum number of parameters is used to determine the record size.
The production program must use the LID when writing the Level 3TP
record.

The calling sequence for OPENL3TP is as follows:

CALL OPENL3TP (DATA_TYPE, SUBTYPE, START_ DATTIM, STOP_DATTIM,
UARS_ DAY, OLD_NEW, SIZE, MAX NP, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA_TYPE CHAR*12 I Instrument identifier

SUBTYPE CHAR*12 I Type of data. The subtypes for each
instrument are defined by the
investigator

START_ DATTIM I*4(2) I Start date and time in UDTF. Required

only when accessing cataloged data.

STOP_DATTIM I*4(2) I Stop date and time in UDTF. Required
only when accessing cataloged data.

UARS_DAY I*4 I UARS day number (DDDD). Required only
when accessing a new or held Level 3
parameter file.

ARGUMENT TYPE I/0 DEFINITION

OLD_NEW CHAR*4 4 File existence flag
'NEW ' = New file
'OLD ' = Existing file
'HELD' = Held file from previous job
step
SIZE I*4 I Estimated size of the parameter file in

blocks. This argument is required only
when creating a new file.

MAX NP I*4 I/0 For a new file, the number of 32-bit
- words to be contained in a parameter
file record. For an existing file, the
maximum number of 32-bit words
contained in a record.

LID CHAR*16 I Logical file identifier

STATUS I*4 o Open status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
file

PFA_NOOLDFILE - No data found or file
does not exist

PFA_NOOPTDATA - No optional data
available

PFA_OPTFILMISS - One or more optional
files missing in time range

PFA_OVRLPTIME - Two physical files
have overlapping data

3.2.11 OPEN LEVEL 3LP DATA (OPENL3LP)

The OPENL3LP routine is used to initiate access to Level 3AL
parameter files, also known as Level 3LP files.

To open for reading, the production program supplies the file
type and the subtype of the Level 3LP data to be read. The time range
of the data to be retrieved is supplied in UDTF. OPENL3LP identifies
the physical Level 3LP files required, insures that the files are on
magnetic disk, and opens the first file for read access in shared
mode. OPENL3LP returns the maximum number of 32-bit words available
from each parameter data record. The production program must
subsequently use the logical file identifier to read any data in the
time range specified by the open. Appendix E describes the Level 3LP
file formats.

For output files, OPENL3LP reserves the necessary UCSS-managed
disk space, generates a unique file name, and opens the file. The
number of parameters is used to determine the Level 3LP record size.

=20

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The production program must use the LID when writing the Level 3LP

records.

The calling sequence for OPENL3LP is as follows:

CALL OPENL3LP (DATA TYPE,

ARGUMENT
DATA_TYPE

SUBTYPE

START DATTIM

STOP_DATTIM

UARS_DAY

OLD_NEW

SIZE

MAX_NP

MAX_LAT

MIN LAT

LID

SUBTYPE, START DATTIM, STOP_DATTIM,

UARS DAY, OLD_NEW, SIZE, MAX NP, MAX LAT, MIN_LAT, LID,

STATUS)
TYPE I/0
CHAR*12 I
CHAR*12 I
I*4(2) I
I*4(2) I
I*4 I
CHAR*4 I
I*4 I
I*4 I/0
REAL*4 0
REAL*4 o)

CHAR*16 I

DEFINITION

Instrument identifier

Type of data. The subtypes for each
instrument are defined by the
investigator

Start date and time in UDTF. Required
only when accessing cataloged data.

Stop date and time in UDTF. Required

only when accessing cataloged data.

UARS day number (DDDD). Required only
when accessing a new or held Level 3
parameter file.

File existence flag

'NEW ' = New file
'0LD ' = Existing file
'HELD' = Held file from previous job

step

Estimated size of the parameter file in
blocks. This argument is required only
when creating a new file.

For a new file, the maximum number of
32-bit words to be contained in a
parameter file record. For an existing
file, the maximum number of 32-bit
words contained in a record.

For existing files, the highest
latitude value available (between -88
and 88)

For existing files, the lowest latitude
value available (between -88 and 88)

Logical file identifier

ARGUMENT TYPE I/0 DEFINITION

STATUS I*4 o] Open status code

SS$_NORMAL - Normal return

PFA CLSEERROLD - Error closing file

PFA_NODATARECS - No data records in
file

PFA NOOLDFILE - No data found or file
does not exist

PFA_NOOPTDATA - No optional data
available

PFA_OPTFILMISS - One or more optional
files missing in time range

PFA OVRLPTIME - Two physical files
have overlapping data

3.2.12 QUALITY READ (QUALRD)

QUALRD provides the Fortran-callable read service for the Level 0
guality data. Requests for data are time-referenced by Engineering
Major Frame (EMAF). Each call returns the instrument data from one
EMAF. If the requested time does not correspond to an actual record
time, the closest EMAF with a time greater than the requested time is
returned. The time of the EMAF is returned along with the time of the
next available EMAF.

The calling sequence for QUALRD is as follows:

CALL QUALRD (LID, REQ DATTIM, RET_DATTIM, PARITY, FILL, VERSION,

STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENLO call

REQ_DATTIM I*4(2) I/0 On input, date and time of the
requested EMAF in UDTF. On output,
date and time of the next EMAF
available. If the end of data has been
reached, REQ DATTIM will be zero. If
requested time is beyond the file stop
time, REQ_DATTIM will be the file stop
time.

RET_DATTIM I*4(2) 0 Date and time in UDTF of the EMAF
returned. RET DATTIM will be zero if
the requested time is beyond the file
stop time.

PARITY BYTE(256) O An array of bytes, each bit

corresponding to one of the 2048
Science Minor Frames (SMIFs) of the

3=-22

N

ARGUMENT TYPE I/0 DEFINITION

EMAF, indicating parity errors detected
or presence of fill
0 = SMIF has good cyclical
redundancy check (CRC)
1 = SMIF has bad CRC or fill

FILL BYTE(256) O An array of bytes, each bit
corresponding to one of the 2048 SMIFs
of the EMAF, indicating whether the
SMIF is filled)

0 = SMIF contains data
1 = SMIF contains fill
VERSION I*2(2) o] CCB version and cycle number associated

with Level 0 file read

STATUS I*4 o] Status code
SS$_NORMAL - Normal return
PFA_ATCINCRMENT - ATC increment error
PFA_CLSEERROLD - Error closing file
PFA_EOF - Last record of file
PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap
PFA_REQTMPAST - Requested time is
beyond file stop time
PFA_RETTMPAST - Retrieved time is
beyond processing stop time
PFA_RETTMPREV - Retrieved time
precedes processing start time

3.2.13 READ LEVEL 0 (READLO)

READLO provides a Fortran-callable read service for all types of
Level 0 data. Requests for data are time-referenced by EMAF. Each
call returns the instrument data from one EMAF. If the requested time
does not correspond to an actual record time, the closest EMAF with a
time greater than the requested time is returned. The time of the
EMAF is returned along with the time of the next available EMAF. For
files with one record per EMAF, the data returned is in the format
described in Appendix D. For files with two records per EMAF, the
data returned consists of the data header from the first record
followed by the data from both records.

When the last EMAF of a Level 0 file has been returned as part of
a read, the returned status will be set to PFA_EOF to show that no
more data is available for further sequential input from the file and
the time of the next available EMAF will be set to zero.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for READLO is as follows:

CALL READLO (LID, REQ DATTIM, RET_DATTIM, EMAF_REC, PARITY, FILL,
GAP_FLAG, TIME_FLAG, EMAF RATE, VERSION, STATUS)

ARGUMENT TYPE L/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENLO call

REQ_DATTIM I*4(2) I/0 On input, date and time of the
requested EMAF in UDTF. On output,
date and time of the next EMAF
available. If the end of data has been
reached, REQ DATTIM will be zero. If
requested time is beyond the file stop
time, REQ_DATTIM will be the file stop
time.

RET_DATTIM I*%4(2) o Date and time in UDTF of the start of
the EMAF returned. RET_DATTIM will be
zero if the requested time is beyond
the file stop time.

EMAF_REC BYTE (*) 0 Level 0 telemetry record for the
selected data type. See Appendix D for
the specific format for the type of
Level 0 data to be read. EMAF_REC
contains one EMAF of data.

PARITY BYTE(8) o} A binary array of parity flags for the
64 Science Major Frames (SMAFs) in the
EMAF. There is one bit flag for each
SMAF.
0 = all SMIFs in SMAF have good CRC
codes
1 = one or more SMIFs have CRC
errors or contain fill data

FILL BYTE(8) o A binary array of fill flags for the
SMAFs in the EMAF. There is one bit
flag for each SMAF.

0 = all SMIFs in the SMAF contain
data
1 = one or more SMIFs contain fill

GAP_FLAG I*2 o Indicates whether or not the EMAF
follows a gap
0 = no gap
1 = EMAF follows a gap

ARGUMENT TYPE I/0 DEFINITION

TIME_FLAG I*2 o] ATC time increment flag
0 = normal ATC increment
1 = abnormal ATC increment
EMAF_ RATE I*4 0] EMAF rate (msec/EMAF)
VERSION I*2(2) 0 CCB version and cycle number of the

Level 0 file read

STATUS I*4 o] Status code

SS$_NORMAL - Normal return

PFA_ATCINCRMENT - ATC increment error

PFA CLSEERROLD - Error closing file

PFA EOF - Last record of file

PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_REQTMPAST - Requested time is
beyond file stop time

PFA_RETTMPAST - Retrieved time is
beyond processing stop time

PFA RETTMPREV - Retrieved time
precedes processing start time

3.2.14 READ LEVEL 3AT (READL3AT)

READL3AT provides a Fortran-callable read service for nonsolar,
time-referenced Level 3AT data. Data is requested by time range,
allowing the user to read multiple records of data at a time.

START_ INDEX and NUM_POINTS must overlap the range that was returned by
the OPENL3AT routine via BASE INDEX and MAX _POINTS. READL3AT
retrieves the requested portions of all of the records within the
specified time range, with their corresponding times. READL3AT
returns the actual number of records read and the time of the next
available record. A fill value of X'00008000' is used when data for a
requested element of the UARS standard array is not available. This
value was chosen because it is a reserved value and not a valid
floating point number (special handling required). If the number of
records in the time range exceeds the maximum dimension of the user
array, READL3AT only reads MAX DIM records and returns the appropriate
status.

When the last record of a Level 3AT file has been returned as
part of a read, the returned status will be set to PFA_EOF to show
that no more data is available for further sequential input from the
file and the time of the next available record will be set to zero.

The values of the local solar time and the solar zenith angle
associated with each profile are also returned if requested in the
call via the LST and SZA arguments.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The time ranges of the Level 3AT files are not expected to
overlap. However, if there is time overlap of files in the virtual
time range requested, READL3AT handles the situation. In the example
shown in Figure 3-1, READL3AT retrieves records from File 1 starting
at time T[start] through time T[2], continues reading records from
File 2 with times after T[2] through T[4], and finishes by retrieving
records from File 3 with times between T[4] and T[stop]. In the case
of retrieving a single record with a time that lies within two
physical files, the file from which the record is retrieved is
dependent upon which file is the last one to have been read. For
example, if T[r] lies between T[3] and T[2] and T[(r] is the first
record to be read or the last record read was from File 1, then the
requested record is retrieved from File 1. Otherwise, the record is
retrieved from File 2. Stated another way, records in the overlap
time range are retrieved from the first file when reading sequentially
in the forward direction, and are retrieved from the second file when
reading backwards through the time range.

Figure 3-1. READL3AT Record Overlap Example

READ REQUESTED TIME RANGE |======--c————rm—reemceeee—ee |
T[start] T[r] T[stop]

PHYSICAL FILE 1 |=====--—ceccccccceceaa- :
T[] 3 T[2] 2
PHYSICAL FILE 2 | === :
T3] T(4] :

PHYSICAL FILE 3 R

T(3] T[6]

o

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for READL3AT is as follows:

CALL READL3AT (LID,

ARGUMENT

LID

STRT_DATTIM

STOP_DATTIM

START INDEX

NUM_POINTS

MAX_DIM

RET_DATTIM

NXT DATTIM

NUM_REC

DATA3A

QUAL

STRT_DATTIM, STOP_DATTIM, START_ INDEX, NUM_POINTS,

MAX DIM, RET DATTIM, NXT DATTIM, NUM REC, DATA3A, QUAL,
LAT, LONG, VERSION, STATUS, LST, SZA)

TYPE I/0

CHAR*16 I

I*4(2) I
I1*4(2) 5
I*4 I
I%4 I
I%4 I
I%4 o)
(2,NR)

I%4(2) o)
I%4 0
REAL*4 0
(NP, NR)
REAL*4 0
(NP, NR)
REAL*4 0
(NR)

DEFINITION

Logical file identifier as specified in
the OPENL3AT call

Start date/time of Level 3AT data to be
retrieved, in UDTF

Stop date/time of Level 3AT data to be
retrieved, in UDTF

Index of first element in the UARS
standard data array to be retrieved

Number of elements in the UARS standard
data array (NP) to be retrieved

Maximum number of records (NR) to be
retrieved

Array containing the dates and times
for the Level 3AT records retrieved, in
UDTF

Date/time of next available Level 3AT
record in UDTF. Zero if end of data
has been reached.

Number of Level 3AT records retrieved

Two dimensional array containing the
data type specified at OPENL3AT time.
The first index, offset by START_INDEX
is associated with the element number
in the UARS standard data array. The
second index is associated with time.

Two dimensional array containing
guality information associated with the
data values returned in DATA3A. The
indices are the same as for DATA3A.

Array of geodetic latitudes
corresponding to the Level 3AT records
retrieved

ARGUMENT TYPE I/0 DEFINITION

LONG REAL*4 0 Array of geodetic longitudes
(NR) corresponding to the Level 3AT records
retrieved
VERSION I*2 0 Array containing the source file CCB
(2,NR) version and cycle associated with each

Level 3AT record retrieved

STATUS I*4 0 Read status code

SSS NORMAL - Normal return

PFA_CLSEERROLD - Error closing
cataloged file

PFA_EOF - Last record of file
returned

PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLAPTRNG - No overlap between
requested time range and files time
range

PFA NROVRMXDIM - More records in
time range than can be retrieved at
one time

PFA_RETTMPAST - Retrieved time(s) are
beyond processing stop time

PFA_RETTMPREV - Retrieved time(s)
precede processing start time

 —

LST ' REAL*4 0] Array containing the local solar times
(NR) associated with each Level 3AT record
retrieved (optional)

SZA REAL*4 0 Array containing the solar zenith
(NR) angles associated with each
Level 3AT record retrieved (optional)

3.2.15 READ LEVEL 3S (READL3S)

READL3S provides a Fortran-callable read service for the
Level 3AS and Level 3BS data. Requests are time-referenced by UARS
day. A fill value of X'00008000' is used when data for a requested
element is not available. The calling program specifies the UARS day
range to be read, the starting wavelength bin, and the number of flux
values to be retrieved. The program also provides the wavelength
unit, the flux unit and the distance flag which are used to specify
the units of the wavelengths and flux values returned and to indicate
whether the flux values should be corrected or not. READL3S reads the
data record from each Level 3 solar file in the specified day range or
up to the number of days specified by MAX DAYS if the range is too
large. The wavelengths are returned in WVLNGTHS and are in the units

3-28

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

specified by WVLNGTH_UNITS. The UARS day number of the next available
day is also returned.

When the last record of a Level 3S file has been returned as part
of a read, the returned status will be set to PFA_EOF to show that no
more data is available for further sequential input from the file and
the time of the next available record will be set to zero.

The calling sequence for READL3S is as follows:
CALL READL3S (LID, START DAY, STOP_DAY, MAX DAYS, START_ WVLNGTH,
NUM VALUES, FLUX UNITS, WVLNGTH UNITS DISTANCE FLAG

RET DAY, NXT DAY, NUM RET DAYS, WVLNGTHS, DATA3S,
QUALITY, NUM PARAMS, PARAMS, VERSION, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENL3S call

START DAY I*4 1 The first UARS day of Level 3S data to
be retrieved

STOP_DAY I*4 I The last UARS day of Level 3S data to
be retrieved

MAX DAYS I*4 I Maximum number of days (ND) of data to
be retrieved

START WVLNGTH REAL%*4 I The wavelength associated with the
first value to be returned (in the
units indicated by the value of
WVLNGTH_UNITS as defined below)

NUM_VALUES I*4 1 The number of data values (NV) to be
returned, and correspondingly, the
number of wavelength values returned in
WVLNGTHS

FLUX_UNITS CHAR*17 I Indicates the units in which the DATA3S
array will be returned. Possible
values are:

'W/M~3' - The standard unit in which
the data is stored (Watts per cubic
meter)

'STANDARD' - Same as the above

'W/CM~3' - Watts per cubic centimeter

(calculated by multiplying the
standard values by 1.E-06)

'MW/M"2/NM' - Milliwatts per meter
squared per nanometer (calculated
by multiplying the standard value
by 1.E-06)

3-29

ARGUMENT TYPE I/0 DEFINITION

'ERGS/S/CM"2/A' - Ergs per second per
‘centimeter squared per angstrom ~
(calculated by multiplying the
standard value by 1.E-07)

'PHOTONS/S/CM"2/NM' - Photons per
second per centimeter squared per
nanometer (calculated by
multiplying the standard value by
503.438 times the wavelength in
nanometers)

'PHOTONS/S/CM"2/A' - Photons per
second per centimeter squared per
angstrom (calculated by multiplying
the standard value by 50.3438 times
the corresponding wavelength value
in nanometers)

WVLNGTH_UNITS CHAR*8 X Indicates the units of START_WVLNGTH.
- Possible values are:

'NM' - Nanometers, the standard bin
size

'STANDARD' - Equivalent to 'NM'

'A' - Angstroms, calculated as the
standard wavelength value times 10

'MICRON' - Calculated as the standard
wavelength value times 1.E-03

'CM' - Centimeters, calculated as the
standard wavelength value times
1.E-07

DISTANCE_FLAG CHAR*11 I Indicates whether the DATA3S array of
solar fluxes should reported at 1 AU
distance from the sun or reported at
the actual point of measurement.

Values are:

'l AU' - Reported at 1 AU distance
(stored this way)

'"UNCORRECTED' - Reported at the point
of measurement adjusted by applying
the inverse square law to the mean
solar distance attribute stored
with the data

RET_DAY I*4 o] Array containing the UARS day number
(ND) for the Level 3 solar records retrieved
NXT_DAY I*4 0 The UARS day of the next available

Level 3 solar data record. Zero if end
of data has been reached

NUM_RET_DAYS I*4 0 Number of days of Level 3 solar data
returned

ARGUMENT

WVLNGTHS

DATA3S

QUALITY

NUM_PARAMS

PARAMS

VERSION

STATUS

TYPE

REAL*4
(NV)

REAL*4
(NV,ND)

REAL*4
(NV,ND)

I%4
(ND)

CHAR*20
(2,40,ND)

I*2
(2,ND)

I%4

DEFINITION

Wavelength values in the units
specified by WVLNGTH UNITS
corresponding to the solar flux array
DATA3S. NV is the number of values.

Returned flux values in FLUX UNITS.
The first subscript (NV) is the
wavelength bin index. The second
subscript (ND) is the UARS day number
index.

The quality values corresponding to the
flux data

The number of parameter name and value
pairs provided in PARAMS

A table used to return parameters
stored with the data. Each entry in
the table consists of a pair, a
parameter name and its corresponding
value.

Array containing the CCB version and
cycle associated with each Level 3
solar record retrieved

READL3S status condition code:
SS$_NORMAL - Normal return
PFA_CLSEERROLD - Error closing file
PFA_EOF - Last record of file
PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLAPTRNG - No overlap between
requested time range and files time
range

PFA_ NROVRMXDIM - Number of records
requested exceeds MAX DAYS

PFA_RETTMPAST - Returned records
beyond processing time range

PFA RETTMPREV - Returned records
precedes processing time range

3.2.16 READ LEVEL 3AL (READL3AL)

READL3AL provides a Fortran-callable read service for Level 3AL
data. Data is requested for a latitude band (at 4 degree intervals
between -88. and 88.) by time range and profile range. The profile
range as specified by START INDEX and NUM_POINTS must fall within the

3-31

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

range that was returned by the OPENL3AL routine via BASE_INDEX and
MAX_POINTS. READL3AL retrieves the requested portions of all of the ‘<’
records for the requested latitude band within the specified time
range. The time, the longitude, the quality wvalues, and the version
numbers are also returned for each set of profiles. READL3AL returns
the actual number of records read and the time of the next available
record. A fill value of X'00008000' is used when data for a requested
element of the UARS standard array is not available. This value was
chosen because it is a reserved value and not a valid floating point
number (special handling required). If the number of records in the
time range exceeds the maximum dimension of the user array, READL3AL
only reads MAX DIM records and returns the appropriate status.

When the last record of a Level 3AL file has been returned as
part of a read, the returned status will be set to PFA_EOD to show
that no more data is available for further sequential input at the
desired latitude and the time of the next available record will be set
to zero. «

The values of the local solar time and the solar zenith angle
associated with each profile are also returned if requested in the
call via the LST and SZA arguments.

The calling sequence for READL3AL is as follows:

CALL READL3AL (LID, LAT, STRT_DATTIM, STOP_DATTIM, START_INDEX,
NUM_POINTS, MAX DIM, RET_ DATTIM, NXT DATTIM NUM_REC,

DATA3A, QUAL, LONG, VERSION, STATUS, LST, SZA) =

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier as specified in
the OPENL3AL call

LAT REAL*4 I Geodetic grid latitude of data to be
retrieved (must be at 4 degree interval
between -88. and 88 with an allowed
tolerance of 0.5 degrees.)

STRT_DATTIM I*4(2) I Start date/time of Level 3AL data to be
retrieved, in UDTF

STOP_DATTIM I*4(2) I Stop date/time of Leﬁel 3AL data to be
retrieved, in UDTF

START_INDEX I*4 I Index of first element in the UARS
standard data array to be retrieved

NUM_POINTS I*4 I Number of elements in the UARS standard
data array (NP) to be retrieved

MAX DIM I*4 I Maximum number of records (NR) to be
retrieved -

%32

ARGUMENT

RET_DATTIM

NXT DATTIM

NUM_REC

DATA3A

QUAL

LONG

VERSION

STATUS

TYPE

I%4
(2,NR)

I*4(2)

I*4

REAL*4
(NP,NR)

REAL*4
(NP, NR)

REAL*4
(NR)

I*2
(2,NR)

I*4

1/0

DEFINITION

Array containing the dates and times
for the Level 3AL records retrieved, in
UDTF

Date/time of next available Level 3AL
record in UDTF. Zero, if end of data
has been reached.

Number of Level 3AL records retrieved

Two-dimensional array containing the
data type specified at OPENL3AL time.
The first index, offset by START INDEX
is associated with the element number
in the UARS standard data array. The
second index is associated with time.

Two dimensional array containing
gquality information associated with the
data values returned in DATA3A. The
indices are the same as for DATA3A.

Array of geodetic longitudes
corresponding to the Level 3AL records
retrieved

Array containing the source file CCB
version and cycle associated with each
Level 3AL record retrieved

Read status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD Error closing
cataloged file

PFA_EOD - Last record of file
returned

PFA_NODATAFND - No data in file for
requested time range at requested
latitude

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLPTRNG - No overlap between
requested time range and file's
time range

PFA_NROVRMXDIM - More records in time
range than can be retrieved at one
time

PFA_REQLATOUT - No data for requested
latitude

PFA RETTMPAST - Retrieved time(s) are
beyond processing stop time

PFA_RETTMPREV - Retrieved time(s)
precede processing start time

3-33

ARGUMENT TYPE I/0 DEFINITION

LST REAL*4 o] Array containing the local solar times
(NR) associated with each Level 3AL record
retrieved (optional)

SZA REAL*4 o] Array containing the solar zenith
(NR) angles associated with each
Level 3AL record retrieved (optional)

3.2.17 READ LEVEL 3TP DATA (READL3TP)

READL3TP provides a Fortran-callable read service for non-solar
time-referenced Level 3AT parameter files, also known as Level 3TP
files. Parameter data is requested by time range, allowing the user
to read multiple records of data at a time. The value of MAX NP
requested must not exceed the corresponding value returned by the
OPENL3TP routine. READL3TP retrieves parameter data in the requested
portions of all of the records that fall within the specified time
range, with their corresponding times. READL3TP returns the actual
number of records, the number of parameters, and the time of the next
available record. If the number of records in the time range exceeds
MAX_DIM, the maximum dimension of the user array, READL3TP only reads
MAX DIM records and returns the appropriate status.

Overlapping time ranges in Level 3TP files are handled in the
same manner as for Level 3AT files (see Section 3.2.14).

The calling sequence for READL3TP is as follows:
CALL READL3TP (LID, START_DATTIM, STOP_DATTIM, MAX_ NP, MAX DIM,
RET _ DATTIM NEXT _ DATTIM, NUM REC NP, PARAMETERS LAT,
LONG VERSION, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 : o Logical file identifier specified in
the OPENL3TP call

START DATTIM I*4(2) I Start date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

STOP_DATTIM I*4(2) 1 Stop date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

MAX NP I*4 I Maximum number of 32-bit words to be
retrieved from the parameter file
record

ARGUMENT TYPE

MAX_ DIM I*4

RET_DATTIM I*4
(2,NR)

NEXT DATTIM I*4(2)

NUM_REC I*4

NP I*4 (NR)

PARAMETERS BYTE

(4*NP,NR)
LAT REAL*4
(NR)
LONG REAL*4
(NR)
VERSION I*4
(2,NR)
STATUS I*4

DEFINITION

Maximum number of records (NR) to be
retrieved. If number of records found
exceeds this the first MAX DIM records
are returned.

Array containing the dates and times
(in UDTF) of the Level 3 records
associated the parameter records
retrieved

Date and time (in UDTF) of the next
available parameter record

Number of parameter records returned

Array containing the number of 32-bit
words contained in each parameter file
record

Array containing the parameter records
retrieved. The array contains NUM REC
parameter records. The format and
structure of each parameter record is
the instrument investigator's
responsibility.

Array containing the latitudes of the
Level 3 data records associated with
each parameter record retrieved

Array containing the longitudes of the
Level 3 data records associated with
each parameter record retrieved

Array containing the source file CCB
versions-and cycles associated with
each parameter record retrieved

Read status code

SS$_NORMAL - Normal return

PFA_CLSEERROLD - Error closing file

PFA_EOF - Last record of file
returned

PFA_FILETMGAP - Time gap between two
physical files exceeded normal gap

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLPTRNG - No overlap between
requested time range and file's
time range

PFA_NROVRMXDIM - More records in time
range than can be retrieved at one
time

3-35

S

ARGUMENT TYPE I/0 DEFINITION

PFA RETTMPAST - A retrieved time is
beyond processing stop time

PFA_RETTMPREV - A retrieved time
precedes processing start time

3.2.18 READ LEVEL 3LP DATA (READL3LP)

READL3LP provides a Fortran-callable read service for Level 3AL
parameter files, also known as Level 3LP files. Parameter data is
requested for a latitude band (at 4 degree intervals between -88 and
88.) by time range and number of parameters. The number of parameters
must not exceed the value of MAX NP returned by the OPENL3TP routine.
READL3AL retrieves parameters within the requested portions of all of
the records that lie at the requested latitude band and within the
specified time range. The time, longitude, version numbers and number
of parameters are returned for each parameter record. READL3TP also
returns the actual number of records retrieved and the time of the
next available record. If the number of records available in the time
range exceeds MAX DIM, the maximum dimension of the user array,
READL3TP only reads MAX DIM records and returns the appropriate
status.

The calling sequence for READL3LP is as follows:
CALL READL3LP (LID, LAT, START DATTIM, STOP_DATTIM, MAX NP, MAX DIM,
RET_DATTIM, NEXT DATTIM NUM REC, NP PARAMETERS
LONG VERSION STATUS)

ARGUMENT TAIPE I/0 DEFINITION

LID CHAR*16 ;i Logical file identifier specified in
the OPENL3LP call

LAT REAL*4 i Latitude corresponding to the
associated Level 3 data records

START _DATTIM 1I*4(2) T Start date and time (in UDTF) of the
Level 3 data records associated with
the parameters to be retrieved

STOP_DATTIM I*4(2) I Stop date and time (in UDTF) of the the
Level 3 data records associated with
the parameters to be retrieved

MAX NP I*4 ki Maximum number of 32-bit words to be
retrieved from the parameter file
record

ARGUMENT

MAX_DIM

RET DATTIM

NEXT_DATTIM

NUM_REC

NP

PARAMETERS

TYPE I/0

I*4 I
I*4 0
(2,NR)

I*4 o)
(2)

I*4 o)
I*4 o)
(NR)

BYTE o

(4*MAX NP,NR)

LONG

VERSION

STATUS

REAL*4 o
(NR)

I*4 0
(2,NR)

I*4 0

DEFINITION

Maximum number of records (NR) to be
retrieved. If number of records found
exceeds this, the first MAX DIM records
are returned.

Array containing the dates and times
(in UDTF) of the Level 3 records
associated with the parameter records
retrieved

Date and time (in UDTF) of the next
available Level 3 record associated
with a parameter record

Number of parameter records returned

Array containing the number of 32-bit
words contained in each parameter file
record. NP may be greater than MAX NP,
but only MAX NP 32-bit words will be
returned.

Array containing the parameter records
retrieved. The array contains NUM_REC
parameter records. The format and
structure of each parameter record is
the instrument investigator's
responsibility

Array containing the longitudes of the
Level 3 data records associated with
each parameter record retrieved

Array containing the source file CCB
versions and cycles associated with
each parameter record retrieved

Read status code

SS$_NORMAL - Normal return

PFA CLSEERROLD - Error closing file

PFA EOD - Last record returned

PFA_NODATFND - No data in file for
requested time range at requested
latitude

PFA_NODATARECS - New or held file has
no data

PFA_NOOVRLPTRNG - No overlap between
requested time range and file's
time range

PFA_NROVRMXDIM - More records in time
range than can be retrieved at one
time

3=37

ARGUMENT TYPE I/0 DEFINITION

PFA_ REQLATOUT - No data in file for
requested latitude L —

PFA_RETTMPAST - A retrieved time is
beyond processing stop time

PFA_RETTMPREV - A retrieved time
precedes processing start time

3.2.19 WRITE LEVEL 3AT (WRITEL3AT)

WRITEL3AT writes time-referenced Level 3AT data in the standard
record format (see Appendix E). The Level 3AT file first must be
created by calling the OPENL3AT routine. Level 3AT records are
written on UARS minute boundaries. START_INDEX and NUM_POINTS specify
the range of the data provided by the user. This range must fall
within the range specified to OPENL3AT via the BASE_INDEX and
MAX POINTS parameters. If the user-provided data range is a subset of
the file data range, WRITEL3AT inserts the fill value (X'00008000')
for the remaining data elements. The user must provide the fill value
for any missing elements in the middle of the user-provided data
range. The user does not need to create fill records.

WRITEL3AT also calculates the local solar time and the solar
zenith angle for the record to be written and stores their values in
the record's header. These calculated values may then be retrieved
when the record is read by specifying the LST and SZA arguments in the

e
call to READL3AT.
The calling sequence for WRITEL3AT is as follows:
CALL WRITEL3AT (LID, DATTIM, START_INDEX, NUM_POINTS, DATA3A, QUAL,
LAT, LONG, STATUS)
ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 1 Logical file identifier as specified in
the OPENL3AT call
DATTIM I*4(2) I Date and time of the Level 3AT record
in UDTF
START INDEX I*4 L Index of first element of the UARS
standard data array provided
NUM_POINTS I*4 I Number of elements in the UARS standard
data array provided
DATA3A REAL*4 I One dimensional array containing the
(NUM_POINTS) data type specified at OPENL3AT time.
This array contains NUM_POINTS data
values for consecutive elements in the
~

3-38

ARGUMENT TYPE I/0 DEFINITION

UARS standard data array starting at
element index, START_INDEX

QUAL REAL*4 I Array containing the quality
(NUM_POINTS) information associated with the data
values in DATA3A

LAT REAL*4 I Geodetic latitude corresponding to the
Level 3AT data record

LONG REAL*4 I Geodetic longitude corresponding to the
Level 3AT data record (0-360)

STATUS I*4 0 Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time beyond
nominal UARS day
PFA TIMPREUARS - Record time before
nominal UARS day

3.2.20 WRITE LEVEL 3S (WRITEL3S)

WRITEL3S writes a single record of Level 3AS or Level 3BS data.
The Level 3AS or Level 3BS file must first be created by calling the
OPENL3S routine. The calling program must use the same LID as
specified to OPENL3S.

The Level 3 solar data is stored in a UARS standard solar data
array, where each array element contains the integrated flux from a
1.0 nm wide wavelength bin centered on the 0.5 nm from 115.5 to
425.5 nm. The array can, therefore contain up to 311 solar flux
values. The DATA3S array must contain the number of flux values
specified by MAX VALUES in the call to OPENL3S. The calling program
must supply the same number of values in the QUALITY array. The units
of the flux values must be watts per cubic meter.

Additional information that is stored in the solar data file with
a solar spectrum includes the irradiance values for 4 coronal lines,
Lyman Alpha, a Magnesium line and a Calcium line. Also, the mean
solar distance value (MSD) which is needed to perform the
1 AU-to-actual distance irradiance correction in READL3S must be
provided. This information is supplied by the calling program in the
PARAMS array, which can hold up to 40 parameters. Each parameter in
the array is specified by a pair of values, the first one containing
the parameter's name and the second one, its value.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for WRITEL3S is as follows:

CALL WRITEL3S (LID, DATA3S, QUALITY, NUM_PARAMS, PARAMS, STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 I Logical file identifier as specified in
the OPENL3S call
DATA3S REAL*4 : § Level 3AS or 3BS data. The irradiance
(NP) array is assumed to be in WATTS/M*3

units. NP is the value specified as
MAX VALUES in the OPENL3S call.

QUALITY REAL*4 i Level 3AS or Level 3BS data quality.
(NP) NP same as above.
NUM_PARAMS I*4 z The number of parameter name and value
pairs provided in PARAMS
PARAMS CHAR*20 I A table used to pass parameters to be
(2,40) stored with the data for subsequent

use. Each entry in the table consists
of a pair of values, namely a parameter
name and its corresponding value in
ASCII. The Mean Solar Distance (MSD)
parameter MUST be provided.

STATUS I*4 0 Write status condition code
SS$_NORMAL - Normal return
PFA_PREVSOLDAT - Already wrote solar
record to file

3.2.21 WRITE LEVEL 3AL (WRITEL3AL)

WRITEL3AL writes Level 3AL data in the standard record format
(see Appendix E). The Level 3AL file must first be created by calling
the OPENL3AL routine. Level 3AL records are written on UARS minute
boundaries. START_INDEX and NUM_POINTS specify the range of the data
provided by the user. This range must fall within the range specified
to OPENL3AL via the BASE INDEX and MAX POINTS parameters. If the
user-provided data range is a subset of the file data range, WRITEL3AL
inserts the fill value (X'00008000') for the remaining data elements.
The user must provide the fill value for any missing elements in the
middle of the user-provided data range.

WRITEL3AL also calculates the local solar time and the solar
zenith angle for the record to be written and stores their values in
the record's header. These calculated values may then be retrieved

when the record is read by specifying the LST and SZA arguments in the
call to READL3AL.

3-40

-

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The Level 3AL records are written at standard values of latitude,
i.e. every 4 degrees of latitude from -88. to 88. For each data array
provided, the user must provide the associated GMT date and time and
longitude values.

The calling sequence for WRITEL3AL is as follows:

CALL WRITEL3AL (LID, DATTIM, START INDEX, NUM POINTS, DATA3A, QUAL,
LAT, LONG, STATUS)

ARGUMENT

LID

DATTIM

START_INDEX

NUM_POINTS

DATA3A

QUAL

LONG

STATUS

TYPE I/0
CHAR*16 I
I*4(2) 1
I*4 I
I*4 I
REAL*4 I
(NUM_POINTS)
REAL*4 I

(NUM_POINTS)

REAL*4 i
REAL*4 I
I*4 o]

DEFINITION

Logical file identifier as specified in
the OPENL3AL call

Date and time of the Level 3AL record
in UDTF

Index of first element of the UARS
standard data array provided

Number of elements in the UARS standard
data array provided

One dimensional array containing the
data type specified at OPENL3AL time.
This array contains NUM_POINTS data
values for consecutive elements in the
UARS standard data array starting at
element index, START INDEX.

Array containing the quality
information associated with the data
values in DATA3A

Geodetic latitude grid value
corresponding to the Level 3AL data
record. A tolerance of 0.5 degrees is
allowed in the specification of this
value.

Geodetic longitude corresponding to the
Level 3AL data record (0-360)

Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time beyond
nominal UARS day
PFA_TIMPREUARS Record time before
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.2.22 WRITE LEVEL 3TP DATA (WRITEL3TP)

WRITEL3TP writes time-referenced Level 3AT parameter files, also
know as Level 3TP files, in the standard record format (see
Appendix E). The Level 3TP file first must be created by calling the
OPENL3TP routine. Level 3TP records, like the Level 3AT records, are
written on UARS minute boundaries. NUM_PARAMS specifies the number of
32-bit words to be written to the parameter file. This number must
not be greater than the maximum number of parameters specified to the
OPENL3TP routine via MAX NP. If the user-provided number of
parameters is less than that value of MAX NP, WRITEL3TP inserts zeros
as fill data.

The calling sequence for WRITEL3TP is as follows:

CALL WRITEL3TP (LID, DATTIM, LAT, LONG, NUM_PARAMS, PARAMETERS,

STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier specified in
the OPENL3TP call

DATTIM I*4(2) I Date and time of the associated Level 3
data record (in UDTF)

LAT REAL*4 I Latitude corresponding to the
associated Level 3 data record

LONG REAL*4) Longitude corresponding to the
associated Level 3 data record (0-360)

NUM_PARAMS I*4 I Number of 32-bit words to be written to
the parameter file

PARAMETERS BYTE I Buffer containing the parameters to be

(4*MAX NP) associated with the Level 3 data

record. The format and structure of
this buffer is the instrument
investigator's responsibility.

STATUS I*4 0 Write status code

SS$_NORMAL - Normal return

PFA_TIMAFTUARS - Record time is
beyond nominal UARS day

PFA_TIMPREUARS - Record time precedes
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.2.23 WRITE LEVEL 3LP DATA (WRITEL3LP)

WRITEL3LP writes Level 3AL parameter file, also known as
Level 3LP files, in the standard record format (see Appendix E). The
Level 3LP file must first be created by calling the OPENL3LP routine.
Level 3LP records, like Level 3AL records, are written on UARS minute
boundaries. NUM_PARAMS specifies the number of parameters provided by
the user. This number must not be greater than the value of MAX NP
specified to the OPENL3LP routine. If the user-provided number of
parameters is less than the value of MAX NP, WRITEL3LP inserts zeros
as fill data.

The Level 3LP records are written at standard values of latitude,
i.e. every 4 degrees of latitude from -88 to 88. For each parameter
array provided, the user must provide the associated GMT date and time
and longitude values.

The calling sequence for WRITEL3LP is as follows:

CALL WRITEL3LP(LID, DATTIM, LAT, LONG, NUM_PARAMS, PARAMETERS, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier specified in
the OPENL3LP call

DATTIM I*%4(2) I Date and time of the associated Level 3
data record (in UDTF)

LAT REAL*4 8 Latitude corresponding to the
associated Level 3 data record

LONG REAL*4 i1 Longitude corresponding to the
associated Level 3 data record (0-360)

NUM_PARAMS Ix4 I Number of 32-bit words to be written to
the parameter file

PARAMETERS BYTE I Buffer containing the parameters to be

(4*MAX_NP) associated with the Level 3 data

record. The format and structure of
this buffer is the instrument
investigator's responsibility.

STATUS I*4 0 Write status code
SS$_NORMAL - Normal return
PFA_TIMAFTUARS - Record time is
"beyond nominal UARS day
PFA_TIMPREUARS - Record time precedes
nominal UARS day

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.2.24 CLOSE LOGICAL FILE (CLOSELF)
C—

The CLOSELF routine is used to terminate file access activity for
the Level 0, 3AT, 3AS, 3BS, 3AL, 3LP, and 3TP data. The production
program specifies the logical file identifier associated with the
virtual or physical file to be closed, and the file disposition
(FDISP). Table 3-2 indicates the valid values for the DISP parameter.
If the disposition specifies cataloging of a new Level 3 data file,
CLOSELF closes the file and creates a catalog entry in the UARS
Catalog. The production program provides the file attributes for the
catalog entry (see Table 3-3). If the program asks for a new Level 3
file to be held for further use within the job, the file is closed and
the hold status is entered into the UCSS accounting. For all other
cases, the physical files are closed and the accounting is updated.

Table 3-2. File Disposition Usage

ASSIGN ASGCAT/OPENL3 /ASGCAL

PRE-EXISTING POTENTIAL ASGCOR ASGSCR ASGUSR OPENLO
CATALOGED CATALOGED
DISP FILE FILE

CATALOG N/A 1 N/A N/A N/A N/A

FREE 2 3 2 3 N/A 2

HOLD N/A 4 N/A 5 6 N/A

1 -- A REQUEST TO CATALOG THE FILE IS GENERATED AND THE CATALOG ENTRY

WILL BE CREATED UPON SUCCESSFUL COMPLETION OF THE JOB
2 -- THE FILE IS NO LONGER NEEDED BY THE PROGRAM AND IS RELEASED

3 -- THE FILE IS NO LONGER NEEDED BY THE JOB AND IS DELETED FROM THE
SYSTEM

4 -- THE FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN THE SAME
PRODUCTION JOB AND THE DECISION TO CATALOG IS DEFERRED

5 == THE SCRATCH FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN THE
PRODUCTION JOB

6 == THE USER STATUS FILE IS SAVED FOR USE BY A SUBSEQUENT PROGRAM IN
THE SAME PRODUCTION JOB FOR POST-PRODUCTION ANALYSIS

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-3. CLOSELF Catalog Attributes
ATTRIBUTE REQUIRED
NAME DESCRIPTION OPTIONAL FORMAT
DATA GAP(N) * start and stop optional two 23 character VMS
times of data times
gap N (DD-MMM-YYYY

HH:MM:SS.CC)
separated by a space

DATA_QUALITY_PI user assigned optional | n.m

quality value
DATA QUALITY UARS | user assigned optional n.m
quality value
COMMENTS user comments optional up to 80 characters
* N=1, 2, ... 100

The calling sequence for CLOSELF is as follows:

CALL CLOSELF (LID, DISP, NUM_ATTR, DATA ATTR, STATUS)

ARGUMENT

LID

DISP

NUM_ATTR

DATA_ATTR

TYPE I/0
CHAR*16 I
CHAR*4 I
I*4 1
CHAR*80 I

(2,NUM_ATTR)

DEFINITION

Logical file identifier associated with
this data file. This LID must be the
same logical file identifier specified
in the corresponding open for this data
file.

File disposition
'FREE' = File no longer needed by
program

'"HOLD' = Hold file for use by
subsequent program in job
'"CAT ' = Catalog a new Level 3A file

Number of user supplied catalog
attributes. Required only when
cataloging a file. A maximum of 100
attributes may be given.

User supplied attributes for cataloging
a created data file (see Table 3-3).
The table of attributes is meaningful
only when cataloging a new file. A

3-45

ARGUMENT TYPE I1/0 DEFINITION

dummy string is required when not
cataloging the file.

STATUS I*4 0 Status code
SS$_NORMAL - Normal return
PFA_ CLSEERROLD - Error closing input

file

PFA_FILNOTFREE - Input file could not
be freed

PFA_NODATARECS - No data records in
file

PFA_UNKOPTSFDU - Unknown optimal SFDU
descriptor id

PFA_UNMTCHFDSP - Specified wrong file
disposition for input file

3.2.25 DEASSIGN LOGICAL ID (DASLID)

DASLID terminates the logical connection between the production
program and the data file assigned by ASGCAT, ASGCOR, ASGCAL, ASGUSR,
or ASGSCR. The production program specifies the disposition of the
file with the DISP parameter. For a file (Level 0, 1, 2, 3, or
level-less) with a disposition of 'CAT', DASLID creates a catalog
entry. The user provides the file attributes (see Table 3-4) for the
catalog entry via the DATA_ ATTR parameter. If an existing catalog
file is freed, DASLID ignores the data attributes and updates the
catalog entry only for accounting purposes. For all other types of
files a disposition of 'FREE' results in deletion of the file at job
end and no catalog access. The 'HOLD' option is used when the user
wishes to keep track of a scratch file, user status file or an
uncataloged file for use in a subsequent program in the job.

Table 3-2 provides a description of the usage of the DISP parameter.

W
|

46

p —

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

Table 3-4. DASLID Catalog Attributes
REQUIRED
ATTRIBUTE DESCRIPTION OPTIONAL FORMAT
START_TIME file start required | 23 character VMS time
time (DD-MMM-YYYY
HH:MM:S5S.CC)
STOP_TIME file stop required 23 character VMS time
time
RECORD_SIZE record size optional | encoded integer
for files with
fixed length
records
DATA GAP(N) start and stop optional two 23 character VMS
times of data times separated by a
gap N space
DATA QUALITY UARS | user assigned optional | n.m
quality value
DATA QUALITY_ PI user assigned optional n.m
quality value
COMMENTS user comments optional up to 80 characters
*N=1, 2, ... 100

The calling sequence for DASLID is as follows:

CALL DASLID (LID, DISP, NUM_ATTR, DATA_ATTR, STATUS)

ARGUMENT
LID

DISP

NUM_ATTR

TYPE I/0
CHAR*16 I
CHAR*4 I
I*4 I

DEFINITION

Logical file identifier

File disposition
'"FREE' - release file
'"HOLD' - hold file for subsequent use
'CAT ' - catalog file

Number of user supplied attributes in
DATA_ATTR. Required only when
cataloging a file. A maximum of 100
attributes may be given.

ARGUMENT TYPE I/0 DEFINITION

DATA_ ATTR CHAR*80 : § User supplied attributes for cataloging
(2,N) a created data file (see Table 3-4). L —
The table of attributes is meaningful
only when cataloging a new file.
Otherwise, the attributes are ignored.
A dummy string is required when not
cataloging the file

STATUS I*4 0 Status code

SS$_NORMAL - Normal return

PFA_FILNOTFREE - Input file could not
be freed

PFA_NODATARECS - File contains
no data

PFA_UNMTCHFDSP - Specified wrong file
disposition for input file or user
status file

3.3 UTILITY SERVICES
3.3.1 ERROR CODE REPORTING (ERRCDE)
ERRCDE allows the user to report error conditions encountered
during a production program. An entry is made in the system error
file each time the subroutine is called and the error is included on -
the program summary report.

The calling sequence for ERRCDE is as follows:

CALL ERRCDE (ERROR, COMMENTS)

ARGUMENT TYPE 1/0 DEFINITION
ERROR I%4 I VMS message facility condition code
COMMENTS CHAR*80 I Comments about the error condition

3.3.2 UDTF TO VMS TIME CONVERSION (UTL_CON_UDTF_VMS)

UTL_CON_UDTF_VMS converts date/time in UDTF to the 23 character
VMS time format, DD-MMM-YYYY HH:MM:SS.CC.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for UTL_CON_UDTF_VMS is as follows:

CALL UTL_CON UDTF_VMS (UDTF_TIME, VMS TIME, STATUS)

ARGUMENT TYPE I/o DEFINITION

UDTF_TIME I*4(2) I Date/time in UDTF

VMS_TIME CHAR*23 0 Date/time in VMS character format
STATUS I*4 o] Conversion status

SS$_NORMAL - Normal return

PFA INVUDTFYR - Invalid year
PFA_INVUDTFDAY - Invalid day of year
PFA_INVUDTFMSEC - Invalid
milliseconds of day

3.3.3 PRESSURE/ALTITUDE GRID UTILITY (VERT_DEF)

VERT_DEF provides a Fortran-callable support service to obtain
UARS grid definitions. Instrument and level 3 subtypes are used to
return the associated UARS grid which includes index values, units of
grid, and valid pressure and altitude levels.

The calling program specifies the instrument and level 3 subtype.
The VERT_DEF routine returns the base index, number of points,
pressure and altitude levels, and units of grid.

When an unknown instrument or level 3 subtype in specified, the
VERT_DEF routine returns a warning status in the status field.

Please note that the User's Guide also describes the grid utility
function.

The calling sequence for VERT DEF is as follows:

CALL VERT_DEF (INSTRUMENT_ ID, SUBTYPE, BASE_INDEX, MAX POINTS,
PRESSURE, ALTITUDE UNITS STATUS)

ARGUMENT TYPE I/0 DEFINITION

INSTRUMENT_ID C*12 I Instrument Identifier

SUBTYPE C*12 I Type of data. The subtypes for each
instrument are defined by the
investigator.

BASE_INDEX I*4 o] Start index (lowest) into the

standard data array for which
measurements can be taken for this
data type

3-49

ARGUMENT TYPE I1/0 DEFINITION

MAX POINTS I*4 0 The maximum number of pressure levels
or altitudes for which measurements L—
can be taken for this data type (N)

PRESSURE R#*4 0 An array of the pressure levels for
(N) this data type in millibars

ALTITUDE R*4 (o] An array of the geometric altitudes
(N) for this data type in kilometers

UNITS C*x12 o The units in which the measurements

for this data type are expressed

STATUS I*4 0 Completion status
SS$_NORMAL = Normal return
PFA_INVINSTR - Unknown instrument
PFA_INVDATAGRID - Unknown subtype

3.3.4 DECODE OBC EMAF INTO OBC REPORTS (OBCDECODE)

OBCDECODE extracts information contained in an OBC report from an
OBC Level 0 record. The OBC reports and the OBC report variables are
defined in PIR 1k21-UARS-403 Rev. B. The calling program supplies the
OBC Level 0 record containing the desired OBC report, a report number
identifying the type of report requested and the time of the report -
requested. If the requested time does not correspond to an actual
report time, the time of the first report after the requested time is
used. If more than one report exists for the requested time the first
occurrence of the report with the best data quality is returned. The
requested time must be greater than zero when calling OBCDECODE.

Only the two least significant digits of the report number are
used to identify a report. Predefined OBC report elements are
converted to VAX format and returned in the data arrays. A copy of
the entire OBC report in telemetry format is returned as well. A
FORTRAN include file OBC REP_PARMS.INC is available to allow reports
and report elements to be referenced using the G.E. mnemonics.
OBC_REP_PARMS.INC contains parameter statements that equate the report
name to report numbers and report item names to offsets in the
returned VAX formatted data arrays. Appendix H lists the OBC report
names and numbers and the OBC variables that are reformatted by
OBCDECODE. An example using mnemonics to access report items appears
in Appendix H.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for OBCDECODE is as follows:
CALL OBCDECODE (EMAF_REC, OBC_RPT NUM, REQ DATTIM, RET DATTIM,
OBC_QUALITY, OBC REAL OBC_ INTEGER OBC BYTE,
OBC REC STATUS)

ARGUMENT TYPE I/0 DEFINITION

EMAF_REC BYTE(14400) I Level 0 OBC telemetry record containing
one EMAF of data

OBC_RPT_NUM 1I*4 I The OBC report number of the report
requested. The include file
OBC_REP_PARMS.INC contains the
parameter statements to associate
mnemonics for the OBC reports with the
OBC report numbers.

REQ DATTIM I*4(2) I/0 On input, date and time in UDTF format
of the generation time of the requested
OBC report. On output the generation
time of the next available OBC report
of the requested type available. If no
more reports are in the EMAF,
REQ DATTIM will be set to zero. On
input the value of REQ DATTIM must be
greater than zero.

RET_DATTIM I*4(2) o} Date and time in UDTF format of the
returned OBC report generation

OBC_QUALITY BYTE(1) (0] Indicates parity or fill data for
returned report ‘

good data

parity error

fill data

no data returned

0 weOo

OBC_REAL R*8 (*) 0] Floating point values for report. Use
mnemonics defined in the include file
to reference returned values.

OBC_INTEGER I*4(¥) 0 Integer values for report. Use
mnemonics defined in the include file
to reference returned values.

OBC_BYTE BYTE (*) 0 Integer byte and unpacked bit values
for report. Use mnemonics defined in
the include file to reference returned
values.

OBC_REC BYTE(28) (0] Returned copy of the specified report
unformatted. The first byte is the

3=51

ARGUMENT TYPE 1/0 DEFINITION

report number followed by the report
data. In terms of the G.E.
documentation this buffer contains
words 0 through 27.

STATUS I*4 o Status Code
SS$ NORMAL - Normal return
PFA BADEPOCHYR - Bad ASCO09 Epoch year
(UFL reports only)
PFA_BADOBCEMAF - Bad EMAF record
header
PFA_INVUDTFDAY - Bad UDTF day
requested
PFA INVUDTFMSEC - Bad UDTF msec
requested
PFA INVUDTFYR - Bad UDTF year
requested
PFA_OBCDATATIM - No data for time
specified
PFA_UNKOBCRPT - Unknown report
* Indicates that the minimum size needed varies by OBC report. The

Maximum dimension for OBC_REAL is 12, for OBC_INTEGER is 11, and for
OBC_BYTE is 52.

3.3.5 COMPARE TIMES (UTL_COMPARE TIME)

UTL_COMPARE TIME is a function that compares two times expressed
in 8-byte format and returns a 2- byte integer result. The value of
the result is 1 if the first time is later than the second, zero if
the times match, and -1 if the first time is earlier than the second.

The calling sequence for UTL_COMPARE TIME is as follows:

Result = UTL_COMPARE TIME (FIRST_TIME, SECOND_TIME)

ARGUMENT TYPE I/0 DEFINITION
FIRST TIME I*4(2) I First time to be compared
SECOND_TIME I*4(2) I Second time to be compared
UTL_COMPARE_TIME I*2 0 Result:

1 iff FIRST_TIME
0 iff FIRST_TIME
-1 iff FIRST_ TIME

SECOND_TIME
SECOND_TIME
SECOND_TIME

ALV

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

3.3.6 COMPUTE SECONDS BETWEEN UDTF TIMES (UTL_SEC_TIME DIF)
UTL_SEC_TIME_DIF is a function that returns a real#*8 result

contailning the number of seconds between two UDTF times. The

difference is positive when the first time exceeds the second.

The calling sequence for UTL _SEC_TIME DIF is as follows:

Result = UTL_SEC_TIME DIF (FIRST UTDF_TIME, SECOND_UTDF_ TIME)

ARGUMENT TYPE I/0 DEFINITION
FIRST_UTDF_TIME I*4(2) I First UTDF time
SECOND_UTDF_TIME I*4(2) I Second UTDF time
UTL_SEC_TIME DIF R*8 0 Result: Difference in seconds

(first_time - second_time)

FIRST_TIME I*4(2) 5 ; First time to be compared

3.3.7 CONVERT UARS DAY TO UDTF FORMAT (UTL_UARS_TO_UDTF)

UTL_UARS_TO_UDTF converts a UARS day into a two-word time array
in UDTF format.

The calling sequence for UTL_UARS_TO_UDTF is as follows:

CALL UTL_UARS_TO_UDTF (UARS_DAY, UDTF_TIME)

ARGUMENT TYPE I/0 DEFINITION
UARS DAY I*4 I UARS processing day
UDTF_TIME I*4(2) 0 Time in UDTF format

3.3.8 CONVERT UDTF FORMAT TO UARS DAY (UTL_UDTF_TO_UARS)

UTL_UDTF_TO_UARS converts a date in UTDF format to a date in UARS
format.

UCSS PRODUCTION SOFTWARE SUPPORT ROUTINES

The calling sequence for UTL_UDTF_TO_UARS is as follows:

CALL UTL _UDTF_TO UARS (UDTF_TIME, UARS_DAY)

ARGUMENT TYPE I/0 DEFINITION
UDTF_TIME I%4(2) o Time in UDTF format
UARS_DAY I*4 I UARS processing day

CHAPTER 4

RAC SIMULATED SERVICES

The UCSS provides a collection of services developed to simulate
the production software support services described in Section 3.
These services are designed to facilitate the testing of production
processing software outside of the production environment. Programs
using the simulated services can run at the RACs or in user
directories on the CDHF.

In addition to providing ‘a test capability, the simulated
services can be used by analysis programs that are run on the RACs or
on the CDHF. For example, quick-look files can be transferred to a
RAC and the program to analyze the data can use the OPENLO, READLO,
QUALRD, and CLOSELF routines to access the quick-look files.

The calling sequences for the simulated services are the same as
for the production services. Table 4-1 lists the simulated services,
identifies the section defining the calling sequence, and indicates
the differences in the services.

Table 4-1.

Simulated Services

SUBROUTINE | INTERFACE DIFFERENCES BETWEEN THE SIMULATED SERVICES
NAME DEFINITION AND THE PRODUCTION SERVICES
PGINIT 3:%ad 1. Uses user-supplied PROGRAM PARAMS namelist
to supply program parameters
2. Uses user-supplied FILE PARAMS namelist to
provide file information
3. Uses user-supplied DEFAULT PARAMS namelist
to supply default values for file parameters
4. Creates file parameter table to simulate
the catalog access
PGTERM 3.1.2 1. Program summary report is sent to SYSSOUTPUT
OPENLO 3.2.1 1. Uses file parameter table to identify
file(s)
OPENL3AT 3.2.7 2. Provides access to either a single pseudo-
virtual file created via RAC data transfer
OPENL3AL 3.2.8 or a pool of day files
3. A pool of virtual input day files is
OPENL3S 3.2.9 specified in the FILE_PARAMS Namelist via
DATA _FILE NAME and VIRTUAL_UARS DAY
OPENL3TP 3.2.10 4. REQUIRED_ FLAG in FILE PARAMS Namelist is
used to indicate if all files in the user's
OPENL3LP 3.2.11 processing range are required to be present
ASGCAT 3.2:2 1. Uses file parameter table to identify file
2. Output file location provided in file
parameter table
ASGCOR 3:2:3 1. Uses file parameter table to identify file
ASGCAL 3.2.4 1. Uses file parameter table to identify file
ASGSCR 3.2.5 1. Uses file parameter table to identify file
2. Output file location provided in file
parameter table
ASGUSR 3.2.6 1. Uses file parameter table to identify file

Table 4-1. Simulated Services (Continued)
SUBROUTINE INTERFACE DIFFERENCES BETWEEN SIMULATED AND PRODUCTION
QUALRD 3. 212 1. For virtual input, files in the user's
processing range are selected from the pool
READLO 3.2..13 of files specified via FILE_PARAMS
READL3AT 3.2.14
READL3S 3+2.15
READL3AL 3216
READL3TP 352:17
READL3LP 3.2.18
WRITEL3AT 3+2+19 1. Requires Ephemeris file to be specified as
cataloged input via FILE PARAMS namelist

WRITEL3AL 3.2:21
WRITEL3S 3.2.20 No differences
WRITEL3TP 3.2.22
WRITEL3LP 3.2.23
CLOSELF 3.2.24 1. No access to the catalog

2. Catalog attributes are output to SYSSOUTPUT
DASLID 3.2.25 1. No access to the catalog

2. Catalog attributes are output to SYS$OUTPUT
ERRCDE 3.3.1 1. Error is output to SYSSERROR

2. Error is not logged to log file
UTL_CON 3.3.2 Same routine (UTL_CON_UDTF_VMS)
_UDTF_VMS

RAC SIMULATED SERVICES

4.1 PROGRAM CONTROL SERVICES
4.1.1 JOB INITIALIZATION (RSS_JOB_INIT)

The first program executed in a job run in the simulated
environment is the UCSS job initialization program, RSS_JOB_INIT. It
generates the first portion of the job summary report, the
initialization statistics. The job initialization program is optional
in the runstream, but is provided to be consistent with the production
services.

4.1.2 PROGRAM INITIALIZATION (PGINIT)

The PGINIT subroutine provides the mechanism for passing input
parameters to a user program run in the simulated environment. It
returns the processing time range, the UARS day number, and any user-
defined parameters specific to the program. In the production
environment these parameters are supplied to PGINIT by the scheduler,
but in the simulated environment they are provided by the user in the
job's runstream. The user must provide the required parameters via
the PROGRAM PARAMS namelist. The PROGRAM PARAMS namelist is described
in Table 4-2.

RAC SIMULATED SERVICES

Table 4-2. PROGRAM PARAMS Namelist

NAMELIST PARAMETER DESCRIPTION FORMAT
PROG_NAME program name C20
PROCESSING_START_TIME | processing start time - c23

'DD-MMM-YYYY HH:MM:SS.CC!
PROCESSING_STOP_TIME processing stop time c23

'DD-MMM-YYYY HH:MM:SS.cCC'
UARS_PROCESSING_DAY primary UARS processing day I
LAUNCH_DATE UARS launch date used as the c23

epoch date for UARS day number
- 'DD-MMM-YYYY HH:MM:SS.cCC'

DEF_EXISTS flag for specifying presence of ci
DEFAULT_PARAMS namelist (T or F)

PARAMS (n) * user parameter name n Cc20

VALUES (n) * user parameter value n c20

* n =1 to 50

In the RAC simulated services environment, the user supplies
information about files to be accessed by the program via the
FILE PARAMS namelists. The FILE_PARAMS namelist identifies the
primary catalog attributes and the fully qualified file(s)
specification. 1In the case of a virtual input file, one FILE_ PARAMS
namelist is used to identify a pool of physical files in which all
share the same file attributes. The physical file names and their
associated UARS day are spec1f1ed via the DATA FILE NAME and
VIRTUAL UARS DAY parameters in the FILE PARAMS “namelist. During the
open, the pool matching the user's file attributes is selected, files
which exist and which contain data and which are in the user's
specified processing range are then selected.

PGINIT creates a file parameter table which is used to simulate
the UARS Catalog using FILE PARAMS namelist data from the runstream.
This namelist is described in Table 4-3. The namelist parameters
required for a file are determined by the type of file and its usage.
Table 4-4 identifies the required parameters by file service.

Table 4-3.

FILE_PARAMS Namelist

NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
CALIBRATION_ID calibration table c12
table identifier
CALIBRATION_MATCH calibration day C4 'EXCT' or
match criteria 'PREV' or
'NEXT' or
'NEAR'
DATA_ FILE NAME list of one or C8O(*) See Notes 1,2
more VMS file
specifications
VIRTUAL_UARS_DAY list of UARS days I{%*) See Note 2
in virtual input
pool
DATA LEVEL data level Cc3 1st char '0',
- v Y@ age
or blank
DATA TYPE data type C1l2
ESTIMATED FILE SIZE estimated file I
size in blocks
FILE_VERSION NUMBER(1) CCB file version I
number
FILE _VERSION_NUMBER(2) file cycle number I
LOGICAL_FILE ID logical file Cl6
identifier
OLD_NEW file status flag C4 'OLD' or 'NEW'
or 'HELD'
PRE_NXT UARS_ DAY actual UARS day I
SOURCE correlative data c12
source
SUBTYPE data subtype c12
UARS_DAY UARS day number X
USER_STATUS_FILE NUMBER | user status file 5§

file number

Table 4-3. FILE PARAMS Namelist (Continued)
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES

REQUIRED_FLAG optional parameter Cl "I pr *E
which, for input,
indicates if all
files in UARS
processing range
are required to be
present

Notes:

1. Only one file name may be specified via DATA_ FILE NAME for all file
types except for virtual input files. For virtual input files up
to 250 files may be specified.

2. The VIRTUAL UARS_DAY parameter is required for virtual input files
containing more than one physical file. It supplies, in one-to-one
correspondence, the nominal UARS days associated which each
physical file specified by the DATA_FILE_NAME parameter.

Table 4-4. Required FILE PARAMS Parameters and Defaults
P A R E T E R
FILE SERVICE 2| 3| 4| 5| 6 9| 10| 11| 12| 13| 14| 15
OPENLO X| OD| D X2
ASGCAT
OLD X| OD| D D X| OD
NEW X| ND| D D X| ND
HELD X X| D| X X X X
OPENL 3AT,
3AL,3TP, 3LP
OLD X| OD| D D X X2
NEW X| ND| D D X| ND
HELD X X| D| X X X X
OPENL3S
OLD X| ob| D D X2
NEW X| ND| D D ND
HELD X X| D| X X X
*ASGCAL
OLD D1| X| OD X1 D| OD
NEW X| ND X D| ND
HELD X X X X D X
ASGCOR X X| X| oD
ASGSCR
NEW X SD
HELD X X X
ASGUSR X X
Legend:
1 CALIBRATION_ID 6 ESTIMATED FILE SIZE 11 SOURCE
2 CALIBRATION_MATCH 7 FILE VERSION NUMBER 12 SUBTYPE
3 DATA_FILE_NAME 8 LOGICAL FILE ID 13 UARS_DAY
4 DATA_LEVEL 9 OLD_NEW 14 USER_STATUS_FILE_NUMBER
5 DATA_TYPE 10 PRE_NXT UARS_DAY 15 VIRTUAL_UARS_DAY

Table 4-4. Required FILE PARAMS Parameters and Defaults (Continued)

X1

X2

D1

ND
oD
SD

For dayless calibration, UARS DAY is set to zero and
CALIBRATION_MATCH and PRE NXT UARS_DAY are omitted

Parameter always required, no default exists

Parameter required only for calibration by day with
CALIBRATION_MATCH not equal to 'EXCT'

Parameter required only when more than one physical file has been
specified by DATA FILE NAME

Parameter required, if not given, use DEF <f11e-parameter name>
Parameter required only for calibration by day, if not given, use
DEF CALIBRATION MATCH

Parameter required, if not glven, use DEF_NEW <file-parameter-name>
Parameter required, if not given, use DEF OLD _<file-parameter-name>
Parameter required, if not given, use default value 'NEW'

RAC SIMULATED SERVICES

The user has the ability to supply default file parameters via
the DEFAULT PARAMS namelist. Default file parameters are used when
required file parameters are not supplied in the FILE PARAMS namelist
and a default parameter is applicable and has been specified. The
DEFAULT_PARAMS namelist is described in Table 4-5. Table 4-4 shows
which default parameters are applicable based on file access type.
The DEFAULT PARAMS namelist is entered in the job runstream after the
PROGRAM _ PARAMS namelist and before the first FILE PARAMS namelist. 1If
default parameters are supplied, the DEF EXISTS parameter in the
PROGRAM_PARAMS namelist must be set to 'T'. If DEF EXISTS is not
specified in the PROGRAM PARAMS namelist then defaults will not be
applied and values specified via the DEFAULT_ PARAMS namelist will be
ignored.

RAC SIMULATED SERVICES

Table 4-5. DEFAULT PARAMS Namelist
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
DEF_OLD_NEW default for old or new Cc4 'oLD!,
files requiring OLD_NEW or
(see Note 1.) 'NEW'
DEF_OLD_DATA LEVEL default for old files C3 1st char
requiring DATA_LEVEL re','11,
(see Note 1.) r2',"3",
or blanks
DEF_NEW_DATA_ LEVEL default for new files C3 1st char
requiring DATA_LEVEL L LT T
(see Note 1.) t3*r, or
blanks
DEF_OLD_UARS_DAY default for old files 3
requiring UARS_DAY
(see Note 1.)
DEF_NEW_UARS_DAY default for new files I
requiring UARS_DAY
(see Note 1.)
DEF_DATA_TYPE default for all files Ci12
requiring DATA_TYPE
DEF_CALIBRATION_ MATCH Default for Calibration C4 'EXCT',
files with nonzero 'PREV',
UARS_DAY specified 'NEXT', or
(see Note 2.) 'NEAR'
DEF_SUBTYPE Default for Calibration C12

Notes:

1. There is no default
files.

files requiring subtype

for DATA LEVEL, UARS DAY, and OLD_NEW for held

2. If CALIBRATION MATCH is omitted for a calibration file then
DEF_CALIBRATION MATCH will be used if and only if UARS_DAY is

non-zero.

RAC STMULATED SERVICES

4.1.3 PROGRAM TERMINATION (PGTERM)

PGTERM terminates a program run in the simulated environment.
The user's program is responsible for determining the success or
failure of the processing and reports the result via PGTERM. PGTERM
updates the accounting information and produces a program summary
report which is sent to the SYS$OUTPUT device. PGTERM must be called
at the end of each program.

4.1.4 JOB TERMINATION (RSS_JOB_TERM)

The last program executed in a job run in the simulated
environment is the job termination program, RSS_JOB_TERM. It
generates the second portion of the job summary report, the job
completion statistics. The job termination program is optional in the
runstream, but is provided to be consistent with the production
services.

4.2 FILE ACCESS

This section describes the software support services designed to
provide access to user-managed files in the simulated environment.
Services are provided to access all levels of instrument files,
calibration files, correlative files, user status files, and scratch
files.

The UCSS provides the OPENLO, READLO, QUALRD, and CLOSELF
services to access Level 0 data in the simulated environment. The
access to the UARS Catalog required to identify the requested file is
simulated using the file parameter table created by PGINIT. The
simulated environment allows access to both day files and pseudo-
virtual files generated via RAC data transfer. However, when a
pseudo_virtual file is specified, no other physical file may be listed
as part of the DATA_FILE NAME parameter.

The UCSS provides the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, READL3AT, READL3S, READL3AL, READL3TP, READL3LP, WRITEL3AT,
WRITEL3S, WRITEL3AL, WRITEL3TP, WRITEL3LP, and CLOSELF services to
access Level 3 data and Level 3 data parameters at processing levels
3AT, 3AL, 3AS, and 3BS in the simulated environment. The access to
the UARS Catalog required to identify the requested input file is
simulated using the file parameter table created by PGINIT. The file
parameter. table is also used to identify output file locations. The
simulated environment allows access to both day files and pseudo-
virtual files in the same manner as described above for Level 0 data.

There are no differences in the functions of the Level 3 write
services from the production versions. Write services for Level 3AT
and Level 3AL files require the use of an ephemeris file as input.

4-12

RAC SIMULATED SERVICES

This file provides information that is used to calculate the values of
local solar time (LST) and solar zenith angle (SZA) that are stored in
each data record. The CLOSELF service simulates the cataloging
function by writing the catalog attributes to SYS$SOUTPUT when the user
program requests cataloging of a Level 3 file.

The UCSS provides the ASGCAT, ASGCOR, ASGCAL, ASGUSR, and ASGSCR
services to assign Level 0, Level 1, Level 2, Level 3, correlative,
calibration, user status, and scratch files in the simulated
environment. The access to the UARS Catalog required to identify the
requested cataloged files is simulated using the file parameter table
created by PGINIT. The file parameter table is also used to identify
the locations of output files. The UCSS also provides the DASLID
service to record the user supplied file disposition and to simulate
the cataloging function.

The user is responsible for providing the I/0O services to access
auxiliary files. If the user program generates auxiliary files, the
user must define the AUX DIRECTORY logical name in the runstream to
identify the disk and directory where the files are to be created.

4.3 UTILITY SERVICES

The UCSS provides the utility services (see Section 3.3) in the
simulated environment. Table 4-1 shows the functional differences in
these services between the simulated and production environments.

4.4 JOB RUNSTREAM FOR THE SIMULATED ENVIRONMENT

Figures 4-1 and 4-2 present sample runstreams for jobs that use
the simulated services. The Level 1 processing job in the first
example consists of two program steps. The job uses Level 0,
calibration, and correlative data as input, generates an intermediate
scratch file to pass information between programs, and produces a
Level 1 file. The second example illustrates a job that produces a
Level 3AT file using a Level 2 data file and an ephemeris file as
input. The ephemeris file is needed for the solar zenith angle (SZA)
and local solar time (LST) stored with each record in the Level 3AT
file. The following notes pertain to the annotated runstreams in
Figure 4-1 and Figure 4-2:

1. The AUX DIRECTORY logical name, defined for the job,
identifies the disk and directory to be used for auxiliary
files. AUX_DIRECTORY must be defined for any job that
creates auxiliary files.

2. The UCSS_JOB_ID logical name is a 21 character identifier for
the job. It is not required for simulated runstreams, but
the job identifier is included on the job summary reports if

4-13

10.

11

12.

RAC SIMULATED SERVICES

it is provided.

The RSS_JOB_INIT program is the UCSS job initialization
program " for the simulated environment. It is the first
program run in the job. RSS_EXE is the logical name
identifying the disk and directory location of the UCSS
executable code. The RSS_JOB_INIT can be omitted from the
simulated runstream.

The UARS_PASS FLAG is used to indicate the success or failure
of each job step. The UARS PASS_FLAG must be tested after
each job step to prevent further processing in the event of
job failure. The UARS_PASS_FLAG is controlled by the UCSS
software.

The start of each job step can be labeled to accommodate
user-supplied conditional tests.

The JOB_STEP logical name identifies the job step number.
Each job step is numbered sequentially. The job step number
appears on the program summary report.

This run command causes execution of the user-supplied
program. MLSEXE is the logical name identifying the disk and
directory location of the MLS executable code.

The PROGRAM_ PARAMS namelist provides the input parameters
(see Table 4-2) to the progran.

The PROGRAM PARAMS namelist parameters PROCESSING_START TIME,
PROCESSING_ STOP TIME, and LAUNCH DATE may be specified in
either VAX/VMS 23 character date and time format or UARS
standard Date and Time (UDTF) format. When UDTF time/date
format is used the two integers must be separated by one or
more blanks. UDTF format is described in Appendix A.

The DEFAULT PARAMS namelist provides default values for
required file parameters. Default values are used if
required parameters are not specified in a FILE_ PARAMS
namelist. Table 4-4 shows the required file parameters and
applicable defaults by file access type. Table 4-5 describes
each DEFAULT PARAMS parameter.

A FILE PARAMS namelist must be provided for each file
accessed by the program. Table 4-3 identifies the namelist
parameters and Table 4-4 identifies which parameters are
required for each type of file access.

In the case of a virtual input Level 0 or Level 3 file, the
FILE PARAMS namelist is used to set up a pool of physical
files each sharing the same general file attributes. The
DATA FILE_NAME parameter specifies each physical file and the
VIRTUAL UARS _DAY parameter lists the nominal UARS day

4-14

13.

14.

15

16.

17.

RAC SIMULATED SERVICES

associated with each physical file specified. During the
open, the pool with attributes matching those specified by
the user is identified and files within the user's processing
range are selected.

The VIRTUAL UARS DAY parameter is only required for a virtual
input file containing two or more physical files.

The job termination or exit step must be labeled. This label
is required even when RSS_JOB_TERM is not used.

The RSS_JOB_TERM program is the UCSS job termination program
for the simulated environment. It is the last program run in
the job. RSS_EXE is the logical name identifying the disk
and directory location of the UCSS executable code.
RSS_JOB_TERM can be omitted from the simulated runstream.

An SFDU file containing appropriate information for
generating SFDU headers should be provided whenever new
Level 3 data files are to be generated. (See Appendix G for
a description of the format and content of this file.)

An appropriate epheméris file must be specified whenever a
new Level 3AL, Level 3AT, Level 3AS, or Level 35S file is to
be generated.

Figure 4-1. First Sample Simulated Environment Job Runstream

RAC SIMULATED SERVICES

Figure 4-1. First Sample Simulated Environment Job Runstream

|

ON ERROR THEN GOTO JOBTERM

set default DISK4:[MLSSCRATCH]

define/process AUX_DIRECTORY DISK3:[AUXFILES] 1
deflne/process UCSS JOB_ID MLS10010010001000200 2

1 First program is UCSS Job Initialization
]
run RSS EXE:RSS JOB_INIT
if (UARS_PASS_FLAG .EQS. "FAIL") then goto JOBTERM
!
! STEP 1
1
JOB_STEP_1:
“define/process JOB_STEP 1
run MLSEXE:MLSL1CAL
SPROGRAM_PARAMS
PROG_NAME='MLSL1CAL'
PROCESSING_START TIME='92089 0'
PROCESSING STOP_ TIME='92089 86399990 9
UARS PROCESSING DAY=119
LAUNCH*DATE*'91335 o'
DEF_EXISTS='T'
PARAMS (1)="'CALIBRATION_FLAG'
VALUES(1)='1"
SEND
$SDEFAULT PARAMS . 10
DEF_DATA_ TYPE= 'MLS'
DEF_OLD_UARS_ DAY= 119

EOROEGEGEHEGEGEEGEE R E R R TR]
oW

0o n

$END
$SFILE_PARAMS 11
DATA FILE NAME='DISK3:[MLSLEVELO)MLSLOD119.DAT', 12
'DISK3: [MLSLEVELO]MLSLOD120.DAT",
'DISK3: [MLSLEVELO]MLSLOD121.DAT",
'DISK3: [MLSLEVELO]MLSLOD122.DAT',
VIRTUAL UARS DAY=119,120,121,122 13
DATA_LEVEL='0"
SEND

$FILE_PARAMS
CALIBRATION_ID='CAL_PARAMS'
CALIBRATION_MATCH='EXCT'
DATA FILE NAME='DISK3: [MLSCAL]MLSL1CAL PARAMSL1.DAT'
DATA LEVEL="1"
SUBTYPE='MLS"
SEND

RAC SIMULATED SERVICES
Figure 4-1. First Sample Simulated Environment Job Runstream

SFILE_PARAMS
CALIBRATION ID='CAL_PARAMS'
DATA_FILE_NAME='DISK3: [MLSCAL]MLSL1CAL PARAMSL1.NEW'
DATA_LEVEL='1"
OLD_NEW='NEW'
SUBTYPE='MLS'
UARS_DAY=120

SEND

$FILE_PARAMS
DATA_FILE NAME='MLSL1SCRATCH.DAT'
LOGICAL_FILE_ID='SCRATCH_LID'

$END

$ if (UARS_PASS FLAG .EQS. "FAIL") then goto JOBTERM
|

! STEP 2
!

JOB_STEP 2:
define/process JOB_STEP 2
run MLSEXE:MLSL10OUT
$PROGRAM PARAMS
PROG NAME='MLSL1OUT'
PROCESSING START_TIME='29-MAR-1992 00:00:00.00'
PROCESSING STOP__ TIME='29-MAR-1992 23:59:59.99"
UARShPROCESSING_DAY 119
LAUNCH DATE='01-DEC-1991 00:00:00.00'
DEF_EXISTS='T!'
SEND
SDEFAULT_PARAMS
DEF NEW DATA LEVEL='1l'
DEF NEW UARS DAY— 119
DEF OLD UARS DAY‘ 119
DEF_ DATA TYPE= 'MLS'
SEND
SFILE PARAMS
DATA FILE NAME='MLSL1SCRATCH.DAT'
LOGICAL FILE ID='SCRATCH LID'
OLD_NEW—'HELD'
ESTIMATED FILE SIZE=500
SEND
SFILE_PARAMS
DATA FILE NAME='DISK3:[MLSLEVEL1]MLSL1D119.DAT'
OLD NEW='NEW'
SUBTYPE="'NONE'
$SEND

$
$
$
$
$
¢

RAC SIMULATED SERVICES

Figure 4-1. First Sample Simulated Environment Job Runstream

SFILE_PARAMS
DATA_FILE NAME='DISK1l: [CORREL]NMCD119.DAT'
SOURCE='NMC'
SUBTYPE= 'NMC_DATA'
$SEND
$!
$! Last Program is UCSS Job Termination
$!
SJOBTERM: 14
$ run RSS_EXE:RSS_JOB_TERM 15
$ exit
Figure 4-2. Second Sample Simulated Environment Job Runstream

LOROEOGEORHGEGEGEGEGEGEGEDEREGEGEGEGE RG]

RAC SIMULATED SERVICES

Figure 4-2. Second Sample Simulated Environment Job Runstream

|
!
! THIS JOB PRODUCES A LEVEL 3AT FILE USING A LEVEL-2
! DATA FILE AND AN EPHEMERIS FILE AS INPUT.

|

ON ERROR THEN GOTO JOBTERM

set default DISK4:[MLSSCRATCH]

define/process UCSS_JOB_ID HRDI_L3AT_ITTEST00001
deflne/process UARS SFDU FILE sfdu dir: UARS_SFDU_FILE.DATA

! First program is UCSS Job Initiation

!

run RSS_EXE:RSS_JOB_INIT

1f (UARS PASS _ FLAG .EQS. "FAIL") then goto JOBTERM

! STEP 1
JOB_STEP_1:
“define/process JOB_STEP 1
run HRDIEXE:L2 TO_ L3AT.exe
$PROGRAM PARAMS
PROG_NAME='10_to_1l3a_held2',
PROCESSING_START TIME='02-FEb-1992 00:00:00.00"',
PROCESSING_STOP_TIME ='02-fEB-1992 23:59:59.99',
UARS_PROCESSING_DAY=125,
Launch_Date='01-0cT-1991 00:00:00.00"
DEF_EXISTS = 'T!
PARAMS (1)='L3A_EST_FSIZE',
VALUES (1)='400"
PARAMS (2)='START_INDEX',
VALUES (2)="1"
PARAMS (3)='NUM_POINTS',
VALUES (3) = '20'
PARAMS (4)="'MAX REC_COUNT'
VALUES (4)="'1000"'
$END
SDEFAULT PARAMS
DEF_DATA_TYPE = 'HRDI'
DEF_OLD DATA_ LEVEL = '2'
DEF_ NEW DATA LEVEL = '3AT'
DEF_OLD_ UARS_DAY 125
DEF_NEW_UARS_DAY 125
SEND

RAC SIMULATED SERVICES

Figure 4-2. Second Sample Simulated Environment Job Runstream

1
! EPHEMERIS file
]
SFILE PARAMS
DATA_FILE NAME='IPD$DISK: [UOAS]SLPEPHEM D0001. V0001_CO01_PROD', 17
DATA_LEVEL=' ',
DATA TYPE='SLPephem',

SUBTYPE=' ',
OLD_NEW='OLD',
UARS DAY=1

S$SEND
|
! HRDI level 2 input file
1

SFILE_PARAMS
DATA FILE NAME='hrdi_data:hrd 12 day_0125.dat'

SUBTYPE = 'TEMPERATURE'
OLD_NEW = 'OLD'

SEND
|

! hrdi Level 3at output data
1
SFILE PARAMS
DATA FILE_NAME='hrdi_data:hrd_l3at_day 125.dat’,
FILE VERSION NUMBER(l)-z
FILE VERSION _NUMBER(2)=2,
OLD NEW 'NEW'
SUBTYPE='teMPErature',

SEND
|

Last Program is UCSS Job Termination

'

!

!
JOBTERM:

RO ROEOEDEH R

$ run RSS_EXE:RSS_JOB_TERM
$ EXIT

CHAPTER 5

UCSS ANALYSIS SERVICES

5.1 ANALYSIS SERVICES

The UCSS provides a collection of services that allows a user
program read access to cataloged files in the UCSS-managed system
space and that can stage the cataloged data from the MSS, if the data
is offline.

The calling sequences for these services is compatible with the
corresponding services available in the production environment.
Table 5-1 lists the analysis service, identifies the section defining
the calling sequences, and indicates the difference between the
analysis service and its production counterpart. The major difference
for all the services is that all errors are returned to the caller in

the analysis environment.

Table 5-1. Analysis Services

SUBROUTINE | INTERFACE DIFFERENCES BETWEEN THE ANALYSIS SERVICES
NAME DEFINITION AND THE PRODUCTION SERVICES
PGINIT - P P 1. 1Initializes global tables
2. No production accounting
PGTERM 5.2.2 1. Cleans up files
2. No production accounting or summary report
OPENLO 3+2s1 1. No production accounting
ASGCAT 3.2.2 1. Existing cataloged files only
2. No production accounting
3. No output files
ASGCOR 3.2.3 1. No production accounting
ASGCAL 3.2.4 1. No production accounting
ASGQL 5.3:2:1 1. Not available as a production service
GENASG 5.3.2.2 1. Not available as a production service
OPENL3AT i i 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3AL 3.2:8 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3S 34249 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3TP 3.2.10 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENL3LP 3:2.41 1. Access (Read) to existing cataloged files
only
2. No production accounting
3. No output files
OPENQL 5.3.3 1. Not available as production service
QUALRD 3.2.12 1. No production accounting

Table 5-1. Analysis Services (Continued)

SUBROUTINE INTERFACE DIFFERENCES BETWEEN ANALYSIS AND PRODUCTION
QUALQL 5.3.5 1. Not available as production service
READLO 342413 1. No production accounting
READL3AT 3.2.14 1. No production accounting
READL3S 3.2.15 1. No production accounting
READL3AL 3.2:16 1. No production accounting
READL3TP 3.2.17 1. No production accounting
READL3LP 3.2.18 1. No production accounting
READQL 53 .d 1. Not available as production service
CLOSELF 3.2.22 1. No production accounting

2. No output files
DASLID 3:2:23 1. No production accounting

2. No output files
SETVERCY N - | 1. Not available as production service
GETVERCY 5w 1. Not available as production service

UCSS ANALYSIS SERVICES

5.2 PROGRAM CONTROL SERVICES
5.2.1 PROGRAM INITIALIZATION (PGINIT)

The PGINIT service establishes an exit handler and initializes
the global tables and variables used by the analysis services. In
particular, it initializes the file version parameters in the file
version table to default values, generates and stores the current
process job identification in the program status table and obtains a
virtual memory zone from the system for any dynamic memory the
services may need. PGINIT should be called at the beginning of each
analysis program.

The calling sequence for PGINIT is as follows:
CALL PGINIT (STATUS)

ARGUMENT TYPE I/0 DEFINITION

STATUS Ix4 o Status code returned
SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.2.2 PROGRAM TERMINATION (PGTERM)

The PGTERM service initiates program termination by invoking its
exit handler, which in turn closes and releases any cataloged files
left open and releases the virtual memory zone assigned the current
process. PGTERM should be called at the end of each analysis program.

The calling sequence for PGTERM is as follows:

CALL PGTERM (PASS_FAIL, COND_CODE, PROG_COMMENT)

ARGUMENT TYPE I/0 DEFINITION

PASS_FAIL CHAR*4 I Program completion status
'PASS' Successful completion
'FAIL' Unsuccessful completion

COND_CODE I*4 I A VMS condition code specifying
additional status information about
program completion

PROG_COMMENT CHAR*80 I Dummy string provided to make interface
consistent with production and RAC
simulated services

UCSS ANALYSIS SERVICES

5.3 FILE ACCESS

This section describes the software support services designed to
provide access to any cataloged file by user programs in the analysis
environment. Most of these services have their counterpart in the
production and RAC simulated environments and will be described only
briefly here insofar as they differ from the corresponding services in
the production environment. The others, namely those that access
cataloged quick-look data files, will be described in more detail.

The UCSS provides the OPENLO, READLO, QUALRD, and CLOSELF
services to access cataloged Level 0 data from programs in the
analysis environment. The mode of access is the same as in the
production environment but, unlike the production versions, the
analysis versions provide no production accounting and no summary
report. The appropriate sequences in which these routines are to be
called is shown in Table 3-1.

By default, the Analysis Services access production files. To
access test flles, define the logical name UCSS TEST DATA FLAG to
TRUE, causing the UCSS software to disregard the test/prod file
attribute.

5.3.1 LEVEL 3 FILE SERVICES

The UCSS provides the OPENL3AT, OPENL3AL, OPENL3S, OPENL3TP,
OPENL3LP, READL3AT, READL3AL, READL3S, READL3TP, READL3LP, and CLOSELF
services to access cataloged Level 3 data as well as Level 3
parameters from programs in the analysis environment. The mode of
access is the same as in the production environment but, unlike the
production versions, the analysis versions provide no production
accounting and no summary report and do not support the generation of
output files. The appropriate sequence in which these routines are to
be called is shown in Table 3-1.

5.3.2 ASSIGN / DEASSIGN SERVICES

In the analysis enviroment, the UCSS provides most file
assign/deassign services available in the production enviroment. They
include:

ASGCAL - assign instrument-oriented cataloged file

ASGCOR - assign UARS day oriented correlative file

ASGCAL - assign user-generated, instrument-oriented
calibration file

DASLID - terminate logical connection between analysis

program and assigned data file
The mode of access is the same as in the production enviroment.

5=5

However, unlike the production versions, the analysis version does not

UCSS ANALYSIS SERVICES

support production accounting, summary report generation, nor
generation of output files.
Sections 3.2.2 - 3.2.4 and Section 3.2.25.

For detail description, refer to

The UCSS also provides two additional services which are

available only to the analysis enviroment.
number to a QUICKLOOK data file, and GENASG, a generic file assignment

ASGQL assigns logical unit

service, assigns any types of cataloged data file based on user
provided file attributes.

5.3+21

ASSIGN QUICKLOOK DATA FILE (ASGQL)

ASGQL assigns a logical file identifier (LID) to a cataloged
QUICKLOOK data file (e.g.

guality and attitude) for read-only access.

instrument, engineering, OBC, spacecraft,
It returns a unique

logical unit number (LUN) that can be used to perform Fortran I/O0 on

the file.

ASGQL identifies the file using the input parameters (see calling
sequence below), stages the file to magnetic disk,
associates the file name with the given LID.

if necessary, and

The analysis program

must open the file using the returned LUN for read-only access in

shared mode.

The calling sequence for ASGQL is as follows:

CALL ASGQL (DATA TYPE, QL_PASS, QL UARS DAY, LID, LUN, STATUS)

ARGUMENT

DATA_TYPE

TYPE

CHAR*12

I/0
1

DEFINITION

'CLAES'
'HALOE'
'"HRDI'
'ISAMS'

'MLS!'

IPEMI
'SOLSTICE'
'SUSIMA'
'SUSIMB'
'WINDII'
'ENGINEERING'
'OBC'
'QUALITY'

' SPACECRAFT'
'EXTRSC!'

' SSPPGIMBALS'

Type of QUICKLOOK data to be accessed,
namely

N

ARGUMENT TYPE I/0 DEFINITION

QL_PASS I*4 I/0 QUICKLOOK pass number (n)
on input,
if > 0, pass n of day QL UARS DAY
if = 0, the latest pass
if < 0, the nth previous pass
on output,
the actual pass number selected

QL_UARS_DAY I*4 I/0 UARS day number
on input,
required, if QL PASS > 0
ignored, otherwise
on output,
the UARS day number of the pass
selected

LID CHAR*12 I Logical file identifier to be
associated with the requested
QUICKLOOK data file

LUN I*4 (o) Logical unit number assigned to the
LID
STATUS I*4 0 Status code returned

SS$_NORMAL - Normal return
other codes - Error (See Table F-1)

5.3.2.2 GENERIC FILE ASSIGNMENT SERVICE (GENASG)

GENASG provides a generic manner of assigning a cataloged file.
Files that can be assigned via this service include all levels of
instrument data files, all types of calibration data files, all types
of user-generated, instrument-oriented correlative data files, and all
types of quick-look data files. GENASG identifies the requested file
using the input attributes, ensures that the file is on magnetic disk,
and associates the input LID with the name of the identified file.

It returns a unique logical unit number (LUN) that can be used to
perform FORTRAN I/O on the file. The analysis program must open the
file for READONLY access.

The calling sequence for GENASG is as follows:

CALL GENASG (LID, NUM_ATTRS, ATTR_NAMES, ATTR VALUES, LUN, STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier to be
associated with the requested
data file

§=7

ARGUMENT TYPE I/0 DEFINITION

NUM_ATTRS I*4 1 Number of attributes (N)

ATTR_NAMES CHAR* (*) (N) I Names of attributes defining the
requested file
(See Notes below)

ATTR_VALUES CHAR#*(*) (N) I Associated Values of attributes in
ATTR_NAMES

LUN I*4 o] Logical unit number assigned to the
LID

STATUS I*4 o} Status code returned

SS$_NORMAL - Normal return
other codes - Error (See Table F-1)

Notes:

Required attributes per data type:

INSTRUMENT CORRELATIVE CALIBRATION QUICKLOOK
TYPE TYPE TYPE TYPE

(=instr. id) (="CORRELATIVE') (="'CALIBRATION') | (='"QUICKLOOK')
SUBTYPE SUBTYPE SUBTYPE SUBTYPE

(Note 1)

LEVEL SOURCE LEVEL (Note 2) QUICKLOOK_ID
DAY DAY DAY (Note 3) DAY

CALIBRATION_ID

Notes 1. Not applicable for Level 0 data
2. Not applicable for levelless file
3. Not applicable for dayless file

5.3.3 OPEN QUICK-LOOK FILE (OPENQL)

The OPENQL service opens a quick-look data file (e.g.
instrument, engineering, OBC, spacecraft or quality) for read access
by a program in the analysis environment. OPENQL identifies the file,
ensures that it is on magnetic disk and opens the file for read access
in shared mode. The analysis program can then use the logical file
identifier (LID) to read data from the quick-look file.

UCSS ANALYSIS SERVICES

The calling sequence for OPENQL is as follows:
CALL OPENQL (DATA_TYPE, QL PASS, UARS DAY, LID, STATUS)

ARGUMENT TYPE I/0 DEFINITION

DATA TYPE CHAR*12 I Mnemonic for type of quick-look data to
be accessed, namely
'CLAES'
'"HALOE'
'HRDI'
'ISAMS'!
'MLS'
IPEM!
'SOLSTICE'
'SUSIMA'
'SUSIMB'
'WINDII'
'ENGINEERING'
'OBC!
'QUALITY'
' SPACECRAFT'

QL _PASS I*4 I/0 Quick-look pass number (n)
On input,
if > 0, pass n of day UARS DAY
if = 0, the latest pass
if < 0, the nth previous pass
On output, the actual pass number

UARS_DAY I*4 I/0 UARS day number. Required on input if
QL_PASS > 0; ignored otherwise. On
output, the UARS day number of the pass

selected.
LID CHAR*16 I Logical file identifier
STATUS I*4 0 Status code returned

SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.3.4 READ QUICK-LOOK FILE (READQL)

READQL provides a read service for cataloged quick-look data from
a program in the analysis environment. OPENQL must be called to
select the quick-look file before READQL can be used. Requests for
data are time-referenced by Engineering Major Frame (EMAF). Each call
returns the instrument data from one EMAF. If the specified time does
not match the time associated with any EMAF, the first EMAF of the
quick-look pass after the specified time is returned. Therefore, the
first EMAF in a file can be read by specifying a zero date and time in

5=9

UCSS ANALYSIS SERVICES

the REQ DATTIM argument field. On return the REQ_DATTIM field
contains the date and time of the next available EMAF. RET_DATTIM
provides the actual date and time of the returned EMAF. If a time
after the last EMAF in the pass is specified, a 'no-data-read' status
is returned.

When the last EMAF of a quicklook data file has been returned as
part of a read, the returned status will be set to PFA EOF to show
that no more data is available for further sequential input from the
file and the time of the next available EMAF will be set to zero.

The calling sequence for READQL is as follows:

CALL READQL (LID, REQ_DATTIM, RET_DATTIM, EMAF_REC, PARITY, FILL,
GAP_ FLAG, TIME FLAG, EMAF RATE, VERSION STATUS)

ARGUMENT TYPE I/0 DEFINITION
LID CHAR*16 1 Logical file identifier
REQ DATTIM I*4(2) I/0 On input, date and time of the

requested EMAF in UDTF format. On
output, date and time of the next EMAF
available.

RET_DATTIM I*4(2) 0 Date and time in UDTF format of the
returned EMAF, namely EMAF_ REC

EMAF_REC BYTE (*) o} Quick-look telemetry record for the
selected instrument. See Appendix D
for the specific format based on
data type. The record contains one
EMAF of data.

PARITY BYTE (8) o] A binary array of parity flags for the
64 Science Major Frames (SMAFs) in
EMAF_REC. There is one bit flag per
SMAF.
0 All SMIFs in the SMAF have good CRC
codes
1 One or more SMIFs have CRC errors
or contain fill data

FILL BYTE(8) (o] A binary array of fill flags for the 64
SMAFs in EMAF REC. There is one bit
flag per SMAF.

0 All SMIFs in the SMAF contain data
1 One or more SMIFs contain fill

GAP_FLAG I*2 0 Indicates whether or not EMAF_REC
follows a gap B
0 No gap
1 EMAF follows a gap

5=-10

ARGUMENT TYPE I/0 DEFINITION

TIME_FLAG I*2 0 Indicates a questionable absolute time
code (ATC) time in EMAF_REC
0 Normal ATC increment
1 Abnormal ATC increment

EMAF_RATE I*4 o) Time interval between EMAFs in msec

VERSION I*2(2) 0 CCB version and cycle number of the
quick-look file read

STATUS I*4 o] Status code returned
SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.3.5 READ QUICK-LOOK DATA QUALITY FILE (QUALQL)

QUALQL provides a read service for cataloged quick-look quality
data from a program in the analysis environment. OPENQL must be
called to select the quick-look file before QUALQL can be used.
Requests for data are time-referenced by Engineering Major Frame
(EMAF). Each call returns one quality record associated with a
particular EMAF. If the specified time does not match the time
associated with any EMAF, the first record of the quality file after
the specified time is returned. On return the REQ DATTIM field
contains the date and time of the next available record. RET_DATTIM
provides the actual date and time of the returned record. 1If a time
after the last EMAF in the pass is specified, a 'no-data-read' status
is returned.

When the last EMAF of a quicklook quality file has been returned
as part of a read, the returned status will be set to PFA_EOF to show
that no more data is available for further sequential input from the
file and the time of the next available EMAF will be set to zero.

The calling sequence for QUALQL is as follows:

CALL QUALQL (LID, REQ_DATTIM, RET DATTIM, PARITY, FILL, VERSION,-

STATUS)

ARGUMENT TYPE I/0 DEFINITION

LID CHAR*16 I Logical file identifier

REQ DATTIM I*4(2) 1/0 On input, date and time of the
requested EMAF in UDTF format. On
output, date and time of the next EMAF
available.

RET_DATTIM I*4(2) 0 Date and time in UDTF format of the

start of the EMAF returned

5-11

ARGUMENT TYPE 1/0 DEFINITION

PARITY BYTE(256) O A binary array of flags for the 2048
Science Minor Frames (SMIFs) in an EMAF
indicating parity errors detected

0 SMIF has good CRC code
1 SMIF has bad CRC code or fill data

FILL BYTE (256) O A binary array of flags for the 2048
SMIFs in an EMAF indicating whether the
SMIFs are filled or not
0 SMIF contains data
1 SMIF contains fill

VERSION I*2(2) (o) CCB version and cycle number of the
guick-look quality file read

STATUS I*4 o] Status code returned
SS$_NORMAL - Normal return
Other codes - Error (See Table F-1)

5.4 OTHER SERVICES
5.4.1 SET VERSION/CYCLE PARAMETERS (SETVERCY)

The SETVERCY service provides a means by which the file version
and/or cycle information for a cataloged file may be specified before
a file is actually opened or assigned via the analysis services.

SETVERCY allows the version/cycle information to be input in two
different forms. The first form provides a version and/or cycle
range, a corresponding selection rule that applies to that range and a
threshold time used to exclude files created after that time. It is
particularly applicable to virtual files spanning more than one day.

The second form provides individual values, of version and cycle for
specific days in a file's processing time range. Both forms can be
specified at the same time. When they are, the second form takes
precedence over the first for any days where the specifications
overlap.

The calling sequence for SETVERCY is as follows:
CALL SETVERCY (LID, START VERSION, STOP_VERSION, VERSION_RULE,

START _ CYCLE, STOP CYCLE TCYCLE RULE THRESHOLD _TIME,
FILE REQUIRED FLAG, NUM _ ENTRIES, DAY VERSION, CYCLE

STATUS)
ARGUMENT TYPE I/O DEFINITION
LID Cc*x1l6 I Logical file identifier of file to be
opened or assigned
START_VERSION I*2 I Lower bound of version range over which =

5=-12

ARGUMENT

STOP_VERSION

VERSION RULE

START_CYCLE

STOP_CYCLE

CYCLE_RULE

THRESHOLD TIME

FILE REQUIRED FLAG

NUM_ENTRIES

DAY

VERSION

CYCLE

STATUS

TYPE I/O

I*2 I
I*2 I
I*2 I
I*2 I
I*2 I
c*23 I
L*1 I
I*4 I
I*4 I
(NE)

I*2 I
(NE)

I*2 I
(NE)

I*4 O

DEFINITION

version rule will apply for file with
given LID

Upper bound of version range over which
version rule will apply for file with
given LID

Rule to be used in selecting the file
version over specified version range
1 HIGHEST in range
2 HIGHEST in common range
9 Do not stage

Lower bound of cycle range over which
cycle rule applies

Upper bound of cycle range over which
cycle rule applies

Rule to be used in selecting file cycle
over specified cycle range. Only
meaningful if version range is not
specified.
1 Highest in range
2 Highest common in range
(default = 1)

Time in VAX ASCII format used as a
threshold in the selection of files by
version rule. Files with values of
creation time exceeding THRESHOLD TIME
will not be selected (If field is left
blank current time will be used)

Flag indicating requirement for all
files for all days within virtual time
range

Number of entries (NE) in DAY, VERSION
and CYCLE arrays

UARS days for which specific values of
file version and cycle are to be used

Values of file version to be used for
each UARS day in DAY array

Values of file cycle to be used in
conjunction with values of version in
VERSION array and UARS day in DAY array

Status code returned
SS$_NORMAL - Normal return

5-13

ARGUMENT TYPE 1/O DEFINITION

PFA_FVPARALRUSD - Specified LID
already in use

PFA FVPARALRSET - Parameters already
set for current or other LID

Other codes - Error (See Table F-1)

5.4.2 GET VERSION/CYCLE PARAMETERS (GETVERCY)

The GETVERCY service provides a means for querying an opened or
assigned file for its version and cycle information.

The calling sequence for GETVERCY is as follows:

CALL GETVERCY (LID, MAX NUM_ENTRIES, NUM_ENTRIES, DAY, VERSION, CYCLE,

STATUS)
ARGUMENT TYPE I/0 DEFINITION
LID C*16 I Logical file identifier of opened or
assigned file
MAX_ NUM_ENTRIES I*4 I Maximum number of entries (NE) allowed
for in day, version, and cycle arrays
NUM_ENTRIES I*4 0 Number of physical files accessible as
part of current file
DAY I*4 (o] UARS day associated with each
(NE) accessible physical file
VERSION I*2 (o] Version number associated with each
(NE) accessible physical file
CYCLE I*2 0 Cycle number associated with each
(NE) accessible physical file
STATUS I*4 o Status code returned

SS$_NORMAL - Normal return

PFA_UNKNOWNLID - Specified LID not
associated with any files

Other codes - Error (See Table F-1)

APPENDIX A

UARS DATE AND TIME FORMAT

The UARS standard format for specifying a date and time (UDTF) is
a two-word array. The date is in the first word in the form of

YYYDDD, specifying the year (e.g., 90) and the day of year (e.g.,
January 1 = 001) requested.

(YEAR - 1900) * 1000 + DAY OF YEAR.

The time is the second word of the array and indicates the time in
milliseconds of day.

APPENDIX B

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

This appendix provides an example of the usage of the UCSS
services. This example uses Level 0 MLS instrument and quality data
as input, generates a scratch file, and produces a Level 1 file.

PROGRAM LEVELO

BYTE MLS_EMAF (10304)
BYTE PARITY (8)

BYTE FILL(8)

BYTE QUAL PARITY (256)
BYTE QUAL_FILL(256)
BYTE OZREC(5000)

BYTE SCREC(512)

CHARACTER*3 LEVEL1/'1'/
CHARACTER*4 NEW_FILE/'NEW'/
CHARACTER*4 PASS FAIL FLAG

'MLS LO EMAF

! SMAF parity flags
!SMAF fill flags
!SMIF parity flags
!SMIF fill flags

!Ll ozone record
!Scratch file record

!Level 1 indicator
!New file flag
!Pass/fail flag

CHARACTER*12 INST_ID/TMLS'/ !Instrument ID
CHARACTER*12 QUALITY/'QUALITY'/ !Quality data type
CHARACTER*12 OZONE_DATA/'OZONE'/ !0Ozone data type
CHARACTER*16 MLID/'MLS_LEVELO_LID'/ !MLS LO LID
CHARACTER*16 QLID/'QUALITY LID'/ !Quality LID
CHARACTER*16 OZLID/'Ll1l_OZONE_LID'/ !Ll ozone LID
CHARACTER*16 SCLID/'SCRATCH_LID'/ !Scratch file LID
CHARACTER*20 PARAMS(2,20) !Program parameters
CHARACTER*80 OZONE ATTR(2,22) !0zone catalog attribute
CHARACTER*80 COMMENTS/' '/ !Program comments
CHARACTER*80 DUMMY ATTR/' '/ !Dummy AAA

INTEGER*2 VERSION(2)
INTEGER*2 GAP_FLAG
INTEGER*2 TIME FLAG

INTEGER*4 STRTIME(2)
INTEGER*4 STPTIME(2)

INTEGER*4 L1 _

START TIME(2)

!Version and cycle
!Missing EMAFs flag

!Questionable time flag

!Proc. start time
!Proc. stop time
111 file start time

PHONP]

00

OO0

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

L1_STOP_TIME(2)
MLS REQ TIME(2)
MLS_ACT TIME(2)
QUAL REQ TIME(2)
QUAL_ACT_TIME(2)
UARS DAY
EMAF_RATE

OZLUN, SCRLUN
OZONE_SIZE/14000/
SCRATCH_SIZE/1400/
COND_CODE

STATUS

IOERR
NUM_OZONE_ATTR

EXTERNAL SS$_NORMAL

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

'Ll file stop time
!MLS request time
!MLS record time
!QUAL request time
!QUAL record time
!UARS processing day
!EMAF rate

!Logical unit numbers

!0zone file size
!Scratch file size

!Program condition code
!Service status

!I/0 error status
!No. ozone attributes

!Normal status code

INITIALIZE PASS/FAIL FLAG AND PROGRAM CONDITION CODE

COND_CODE = %LOC(SS$_NORMAL
PASS FAIL FLAG = 'PASS'

CALL UCSS PROGRAM INITIALIZATION SERVICE

CALL PGINIT(PARAMS, STRTIME, STPTIME, UARS_DAY)

OPEN MLS LEVEL 0 AND QUALITY FILES

CALL OPENLO(INST_ID, STRTIME, STPTIME,
IF (STATUS .EQ. 3%LOC(SS$_NORMAL) THEN

MLID, STATUS)

CALL OPENLO(QUALITY, STRTIME, STPTIME, QLID, STATUS)

IF (STATUS .EQ. %LOC(SS$_NORMAL) THEN

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

c ASSIGN AND OPEN LEVEL 1 OUTPUT FILE FOR OZONE

CALL ASGCAT(UARS_DAY, INST_ID, LEVEL1l, OZONE DATA,
1 NEW_FILE, OZONE SIZE OZLID OZLUN, STATUS)
IF (STATUS .EQ. %LOC(SSS NORMAL) THEN

OPEN (UNIT=0ZLUN, FILE=OZLID,ACCESS="'SEQUENTIAL', RECL=1250,
1 INITIALSIZE=0ZONE SIZE, FORM='UNFORMATTED',
2 STATUS='NEW', IOSTAT=IOERR)

ASSIGN AND OPEN A SCRATCH FILE

(PNONP]

CALL ASGSCR(SCRATCH_SIZE, NEW_FILE, SCLID, SCRLUN, STATUS)
IF (STATUS .EQ. %LOC(SS$ NORMAL) THEN

OPEN (UNIT=SCRLUN, FILE=SCLID, ACCESS='SEQUENTIAL',
i | RECL=128, INITIALSIZE=SCRATCH_SIZE,
2 FORM="'UNFORMATTED', STATUS='NEW', IOSTAT=IOERR)

.

SET INITIAL TIME TO START TIME OF PROCESSING

o000

MLS_REQ TIME = STRTIME
QUAL REQ TIME = STRTIME

READ THE MLS LEVEL 0 EMAF FOR THE TIME
SPECIFIED IN MLS_REQ_ TIME

nonNnoOoO

CALL READLO(MLID, MLS_REQ TIME, MLS_ACT TIME, MLS_EMAF,
1 PARITY, FILL, GAP FLAG TIME_FLAG
2 EMAF_RATE VERSION, STATUS)

READ THE QUALITY DATA FOR THE EMAF WITH THE
TIME SPECIFIED IN QUAL REQ TIME

oNoNoNe]

CALL QUALRD (QLID, QUAL_REQ TIME, QUAL ACT TIME,
1 QUAL _ PARITY, QUAL FILL, VERSION, STATUS)

B-3

QOO0

ioNoNe

(oNOND!

noo

pReNe

UCSS PRODUCTION SERVICE FORTRAN EXAMPLE

WRITE DATA TO OUTPUT FILES

WRITE (OZLUN, IOSTAT=IOERR) OZREC

WRITE (SCRLUN, IOSTAT=IOERR) SCREC

CLOSE MLS LEVEL 0, ENGINEERING AND QUALITY FILES

CALL CLOSELF (MLID, 'FREE',, DUMMY ATTR, STATUS)
CALL CLOSELF(QLID, 'FREE',, DUMMY ATTR, STATUS)

CLOSE AND CATALOG MLS LEVEL 1 OZONE FILE

CLOSE (OZLUN, IOSTAT=IOERR)
NUM_OZONE_ATTR = 3

OZONE ATTR(1,1) = 'START TIME'

CALL UTL_CON UDTF VMS(L1_START TIME, OZONE ATTR(2,1),
STATUS)

OZONE_ATTR(1,2) = 'STOP_TIME'

CALL UTL CON UDTF_VMS (L1 STOP TIME, OZONE ATTR(2,2),
STATUS)

OZONE_ATTR(1,3) = 'RECORD SIZE'

OZONE ATTR(2,3) = '14000'

CALL DASLID(OZLID, 'CAT ', NUM OZONE_ATTR, OZONE ATTR, STATUS)

L]

CLOSE SCRATCH FILE

CLOSE (SCRLUN, TOSTAT=IOERR)
CALL DASLID(SCLID, 'FREE',, DUMMY ATTR, STATUS)

3

CALL PGTERM TO WRAP UP PROGRAM PROCESSING

CALL PGTERM(PASS_FAIL FLAG, COND_CODE, COMMENTS)
STOP
END

APPENDIX C

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

This appendix provides guidelines for the processing of Level 1
and Level 2 data by production programs. The UCSS provides the basic
interface tools for assigning and deassigning the Level 1 and Level 2
data. The programmer is responsible for supplying the read and write
services.

The UCSS provides the ASGCAT, ASGSCR, ASGCOR, and ASGCAL routines
to assign data sets to the production programs. Following assignment
of the file using the appropriate service, the programmer can use
standard Fortran OPEN, READ, WRITE, and CLOSE services to perform the
actual I/O on the file. When opening an existing cataloged file, the
programmer must specify READONLY on the Fortran OPEN statement.

DASLID must be called upon completion of all I/O (after the CLOSE) to
the file. If a new cataloged file was created, DASLID generates the
catalog entry for the file. For existing cataloged files, DASLID
updates the accounting data in the Catalog.

Following are examples of the UCSS services available to the
programmer with sample calls for assigning Level 1 and Level 2 data
sets. In addition an example is presented of how the scratch file
capability can be used to pass data from one program to another within
a processing run.

PROGRAM LVL1A

BYTE L1REC(2400) !Level 1 record
BYTE SCREC(1200) !Scratch record

c
CHARACTER*3 LEVEL1/'l1 '/ !Level 1 indicator
CHARACTER*4 PASS_ FAIL FLAG !Pass/fail flag
CHARACTER*4 NEW_FLAG/'NEW'/ !New file flag
CHARACTER*4 OLD_FLAG/'OLD'/ !Existing file flag
CHARACTER*12 INST_ID/'HALOE '/ !Instrument ID
CHARACTER*12 LEVEL1_TYPE/'NONE '/ !Level 1 file subtype
CHARACTER*16 L1LID/'L1l_ INPUT_LID ! !Level 1 file LID
CHARACTER*16 SCLID/'SCRATCH_LID '/ !Scratch file LID

C-1

naon

OO0 oo

o NoNoNe]

1

1
2

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

CHARACTER#*20 PARAMS(2,20) !Program parameters
CHARACTER#*80 COMMENTS !Program comment
CHARACTER*80 DUMMY ATTR/' '/ !Dummy attribute
INTEGER*4 COND_CODE !Program condition code
INTEGER*4 IOERR !I/0 error status
INTEGER*4 L1LUN, SCRLUN !Logical unit numbers
INTEGER*4 RECNO !Scratch record number
INTEGER*4 SCRATCH_SIZE/1500/ !Scratch file size
INTEGER*4 STATUS !Service status
INTEGER*4 STRTIM(2) !Processing start time
INTEGER#*4 STPTIM(2) !Processing stop time
INTEGER*4 UARS DAY !UARS processing day

EXTERNAL SS$_NORMAL !Normal return code

PASS_FAIL FLAG = 'PASS'
COND_CODE = %LOC(SS$_NORMAL)

CALL PGINIT TO RETRIEVE PROGRAM PARAMETERS

CALL PGINIT(PARAMS, STRTIM, STPTIM, UARS DAY)

-

ASSIGN LEVEL 1 INPUT FILE FOR SPECIFIED DAY

CALL ASGCAT(UARS_DAY, INST ID, LEVELl1l, LEVEL1l_TYPE,
OLD_FLAG,, L1LID, L1LUN, STATUS)
IF (STATUS .EQ. %LOC(SS$_NORMAL)) THEN

ASSIGN A SCRATCH FILE

CALL ASGSCR(SCRATCH SIZE, NEW_FLAG, SCLID, SCRLUN, STATUS)
IF (STATUS .EQ. $LOC(SS$_NORMAL)) THEN

OPEN THE LEVEL 1 INPUT FILE FOR READ ACCESS IN SHARED
MODE. FORMAT IS USER SPECIFIED.

OPEN (UNIT=L1LUN, FILE=L1LID, READONLY, SHARED,
FORM='UNFORMATTED', ACCESS='SEQUENTIAL', STATUS='OLD',
IOSTAT=IOERR)

o0

oOnNn noao a0On

OnNn N0 000N (oNeNe;

oNoNp]

1
2

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

(CHECK OPEN STATUS)

OPEN THE SCRATCH FILE (FORMAT IS USER SPECIFIED)
OPEN (UNIT=SCRLUN, FILE=SCLID, INITIALSIZE=SCRATCH_SIZE,
ACCESS='DIRECT', FORM='UNFORMATTED', STATUS='NEW',

RECL=300, IOSTAT=IOERR)

READ RECORD FROM LEVEL 1 INPUT FILE

READ (L1LUN, IOSTAT=IOERR) L1REC

WRITE A RECORD TO THE SCRATCH FILE

WRITE (SCRLUN, RECNO, IOSTAT=IOERR) SCREC

CLOSE THE LEVEL 1 INPUT FILE
CLOSE(L1LUN, IOSTAT=IOERR)
CLOSE THE SCRATCH FILE
CLOSE (SCRLUN, IOSTAT=IOERR)
DEASSIGN THE LEVEL 1 INPUT FILE
CALL DASLID(L1LID, 'FREE', , DUMMY ATTR, STATUS)
DEASSIGN AND HOLD THE SCRATCH FILE
CALL DASLID(SCLID, 'HOLD',, DUMMY ATTR, STATUS)
CALL PGTERM TO WRAP UP PROGRAM PROCESSING
CALL PGTERM('PASS', COND CODE, COMMENTS)

STOP
END

ey 10

e NoNe!

nno

LEVEL 1 AND LEVEL 2 DATA

PROGRAM LVL1B

BYTE L2REC(1000)
BYTE SCREC(1200)

CHARACTER*3 LEVEL2/'2'/
CHARACTER*4 PASS FAIL FLAG
CHARACTER*4 NEW_FLAG/TNEW'/
CHARACTER*4 HELD FLAG/'HELD'/
CHARACTER*12 INST ID/'HALOE'/
CHARACTER*12 LEVEL2 TYPE/'NONE'/
CHARACTER*16 L2LID/7L2 OUTPUT LID'/
CHARACTER*16 SCLID/'SCRATCH LID'/
CHARACTER*20 PARAMS (2,20)
CHARACTER*80 COMMENTS

CHARACTER*80 DATA ATTR(2,10)

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

EXTERNAL

.

COND_CODE

IOERR

L2 START TIME(2)
L2_STOP_TIME(2)
L2LUN, SCRLUN
LEVEL2_SIZE/2800/
NUM_ATTR

SCRNUM

STATUS

STRTIM(2)
STPTIM(2)
UARS_DAY

SS$_NORMAL

PROCESSING GUIDELINES

!Level 2 record
!Scratch record

!Level 2 indicator

!Pass/fail flag
!New file flag
!Existing file flag

!Instrument ID

!Level 2 file subtype
!Level 2 file LID
!Scratch file LID
!Program parameters
!Program comment

!Catalog attributes

!Program condition code

!I/0 error status

!L2 file start time
!L2 file stop time
!Logical unit numbers
!Level 2 file size

!No. catalog attributes
!Scratch record number
!Service status
!Processing start time
!Processing stop time
!UARS processing day

!Normal return code

INITIALIZE PASS/FAIL FLAG AND PROGRAM CONDITION CODE
PASS FAIL FLAG = 'PASS'

COND_CODE =

$LOC (SS$_NORMAL)

CALL PGINIT TO RETRIEVE PROGRAM PARAMETERS

CALL PGINIT (PARAMS,

.

STRTIM, STPTIM, UARS_DAY)

ASSIGN LEVEL 2 OUTPUT FILE FOR SPECIFIED DAY

CALL ASGCAT(UARS_DAY, INST ID, LEVELZ,

1

IF (STATUS

LEVEL2_TYPE,

NEW FLAG LEVEL2 _SIZE, L2LID L2LUN, STATUS)

.EQ. s'LOC(SSS NORMAL) THEN

c-4

NnNoo [eNeoNe! o0OnNan (ONONP]

o0

oo 000N

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

.

ASSIGN AN EXISTING SCRATCH FILE

CALL ASGSCR(, HELD_FLAG, SCLID, SCRLUN, STATUS)
IF (STATUS .EQ. %LOC(SS$_NORMAL)) THEN

°

OPEN THE LEVEL 2 OUTPUT FILE (FORMAT IS USER
SPECIFIED)

OPEN (UNIT=L2LUN, FILE=L2LID, FORM='UNFORMATTED',

ACCESS='DIRECT', STATUS='NEW', INITIALSIZE=LEVEL2_ SIZE,

RECL=250, IOSTAT=IOERR)

.

*

OPEN THE EXISTING SCRATCH FILE (FORMAT IS USER SPECIFIED)

OPEN (UNIT=SCRLUN, FILE=SCLID,ACCESS="'DIRECT’',
FORM='UNFORMATTED', STATUS='0OLD', IOSTAT=IOERR)

.
.

READ RECORD FROM SCRATCH FILE

READ (SCRLUN, SCRNUM, IOSTAT=IOERR) SCREC

WRITE A RECORD TO THE LEVEL 2 FILE

WRITE (L2LUN, L2ZNUM, IOSTAT=IOERR) L2REC

CLOSE THE LEVEL 2 OUTPUT FILE
CLOSE (L2LUN, IOSTAT=IOERR)
CLOSE THE SCRATCH FILE

CLOSE (SCRLUN, IOSTAT=IOERR)

000N

nNoOon o000

0OnNon

1

LEVEL 1 AND LEVEL 2 DATA PROCESSING GUIDELINES

SET UP LEVEL 2 CATALOG ATTRIBUTE ARRAY TO SPECIFY FILE
START TIME, FILE STOP TIME, AND RECORD SIZE

NUM ATTR = 3

DATA_ATTR(1,1) = 'START TIME'

CALL UTL_CON_UDTF_VMS(L2_START TIME, DATA ATTR(2,1),
STATUS)

DATA ATTR(1,2) = 'STOP_TIME'

CALL UTL_CON_ UDTF_VMS (L2 STOP_TIME, DATA ATTR(2,2), STATUS)
DATA_ATTR(1,3) = 'RECORD SIZE®
DATA_ATTR(2,3) = '2800'
DEASSIGN THE LEVEL 2 OUTPUT FILE
CALL DASLID(L2LID, 'CAT ', NUM_ATTR, DATA ATTR, STATUS)
DEASSIGN AND RELEASE THE SCRATCH FILE
CALL DASLID(SCLID, 'FREE', ,DUMMY_ ATTR, STATUS)
CALL PGTERM TO WRAP UP PROGRAM PROCESSING
CALL PGTERM(PASS_FAIL FLAG, COND CODE, COMMENTS)

STOP
END

APPENDIX D

LEVEL 0 FILE FORMATS

This appendix defines the formats for the Level 0 files.

D.1 SCIENCE TELEMETRY FORMATS AND DECOMMUTATION

The formats for the UARS science telemetry and the engineering
telemetry are being defined by the UARS spacecraft development and
integration contractor, General Electric (GE), Space Systems Division,
in conjunction with the UARS Project. The science telemetry formats
are defined by the GE Program Information Release (PIR) U-1K21-UARS-
700, Reference 8. A copy of the current science minor frame format is
shown in Table D-1.

LEVEL 0 FILE FORMATS

Table D-1. Science Minor Frame Format
WORD| FUNCTION WORD| FUNCTION WORD| FUNCTION WORD| FUNCTION
0 SYNC 'D7! 1 SYNC '99' 2 SYNC '07! 3 CDCUSTAT
4 CDFRMCNT 5 CDFRMCNT 6 CDCMDCNT 7 AATAUXARY
8 ENG_DATA 9 ENG_DATA 10 ENG_DATA 11 ENG_DATA
12 OBC 13 OBC 14 OBC 15 OBC
16 OBC 17 OBC 18 OBC 19 PWIIMLO
20 PSIPULSEA 21 PSIPULSEB 22 SSPPAPOSA 23 SSPPBPOS
24 ES1PITCHF 25 ES1ROLLF 26 ES2PITCHF 27 ES2ROLLF
28 ACRIM II 29 ACRIM II 30 SC_SPARE 31 PWIBAT1HI
32 CLAES 33 CLAES 34 CLAES 35 CLAES
36 CLAES 37 CLAES 38 CLAES 39 CLAES
40 CLAES 41 CLAES 42 CLAES 43 CLAES
44 HALOE 44 HALOE 44 HALOE 44 HALOE
48 HALOE 49 HALOE 50 HALOE 51 HALOE
52 HALOE 53 HALOE 54 HALOE 55 HALOE
56 HALOE 57 HALOE 58 HALOE 59 HALOE
60 HRDI 61 HRDI 62 HRDI 63 HRDI
64 HRDI 65 HRDI 66 HRDI 67 HRDI
68 HRDI 69 HRDI 70 HRDI 71 HRDI
72 HRDI 73 HRDI 74 HRDI 75 HRDI
76 HRDI 77 HRDI 78 HRDI 79 PWIBAT2HI
80 ISAMS 81 ISAMS 82 ISAMS 83 ISAMS
84 MLS 85 MLS 86 MLS 87 MLS
88 MLS 89 SSPPAPOS 90 SSPPBPOS 91 PWIACS
92 PEM 93 PEM 94 PEM 95 PEM
96 PEM 97 PEM 98 PEM 99 PEM
100 PEM 101 PEM 102 PEM 103 PEM
104 PEM 105 PEM 106 SOLSTICE 107 PWICDH
108 SUSIM 109 SUSIM 110 SUSIM 111 SUSIM
112 SUSIM 113 SUSIM 114 SUSIM 115 SUSIM
116 WINDII 117 WINDII 118 WINDII 119 WINDII
120 WINDII 121 WINDII 122 WINDII 123 WINDII
124 PWIBAT3HI 125 PWISCCU 126 PARITY 127 PARITY
As described in PIR 700, there are two science formats. One

format, referred to as SCI-1,

forma
activ

t, scI-2,
ity.

In both formats,

In both SCI-1 and SCI-2 formats,

is the nominal format.
is appropriate to periods of propulsion module

The second

the Science Minor Frame
(SMIF) is 128 words in length, where a word in this context is 8 bits.

the word allocations and assignments are constant.

The difference between the two formats is that the interpretation

changes for 6 of the 17 words of spacecraft telemetry.

LEVEL 0 FILE FORMATS

D.2 DECOMMUTATED FILE FORMATS
D.2.1 GENERAL COMMENTS

The UARS telemetry data is decommutated into 5 Level 0 files.
The first record of each Level 0 file is a file label record which
identifies the type of file and the file contents. The file label
record is followed by data records, where the number of data records
is dependent on the type of file and the time span of telemetry
contained by the file. Each data record contains a standard 64 byte
record header followed by the telemetry words. The record header
contains information describing the record contents.

There is one physical record per EMAF for files with less than
32 Kbytes of telemetry data per EMAF (i.e., 15 or fewer telemetry

words per SMIF). There are two physical records per EMAF for those
files with more than 32 Kbytes of telemetry data per EMAF (i.e., 16 or
more words per SMIF). For these files, the first record contains the

telemetry data for the first 32 SMAFs of the EMAF and the remaining
32 SMAFs are in the second data record.

Because the number of telemetry words varies by file type, the
record length is dependent on the type. If the data record length is
greater than the file header length, the file label record is filled
so that it is the same length. For data records smaller than file
label records, the data records are filled out to the length of the
label record, 2532 bytes.

The Level 0 files are stored on the CDHF as flat files without
any index structure.

This appendix describes the format of the Level 0 data files
stored on the CDHF, the quick-look files, and the "virtual" Level 0
files produced by the UCSS data transfer software. The format of the
virtual Level 0 files is discussed further in Section D.2.3.

D.2.2 FILE LABEL RECORD FORMAT

The file label record format is presented in Table D-2. All file
label record fields are ASCII fields.

Table D-2.

FIELD NAME

Level 0 File Label Record

COMMENTS

BYTES
1 - 4
5 — 8
9 = 12
13 = 16
17 = 20
21 - 24
25 - 28
29 — 36
37 - 40
41 - 44
45 = 48
49 - 64
65 - 68
69 - 84
85 - 88
89 - 92
93 =100
101 -104
105 -108
109 -112
113 =120
121 -124
25 -132
133 =140
141 -148
149 -156
157 =162
163 =168
169 =174
175 =180
181 -184
185 -188
189 =192
193 =196
197 =200
201 =204
205 =208
209 =212
213 =220
221 =236
237 =260
261 -264
265 =272
273 -288
289 =292

satellite id
data set #
data set id
format version

physical record count (='

#

phys. records/EMAF
physical records in file

CCB version number assigned to file
file cycle (transferred files only)

spare
ATC epoch year
ATC - .5 msec
ATC epoch year
ATC - .5 msec
JATC:year
JATC:day
JATC:msec
JATC:usec
JATC:year
JATC:day
JATC:msec
JATC:usec

SMIFs expecte
SMIFs
SMIFs
SMIFs
SMAFs
SMAFs
SMAFs
SMAFs
EMAFs
EMAFs
EMAFs
EMAF's

£ill

expecte

expecte
present

S e e Hh T T e S e TR W R %

d

d

d

begin.
u
"
n
begin.
"
n
L1}
"
n
n
"

with CRC error

1')

of first EMAF
" first "
1] last "

n last n
of first EMAF
" first "

" first "

" first "

n last n

11] last 1 1]

n last n

n last n

in file (excluding fill)

with fill or CRC errors
missing from coverage
EMAF level gaps in coverage

type of data time period

UARS day number
spare

decommutation program version
decommutation run date/time

merge file name
merge rerun #

merge program version
merge run date/time

edit files

'UARS'

see Table D-3
see Table D-3
see Note 1
Rec. # in file
e.g., ' 1!
see Note 2

*1989"

year

day
millisecond
microsecond
year

day
millisecond
microsecond

in file (excluding all fill SMAFs)
of total fill
with partial fill or CRC errors

see Note 3
n L 1) 4

40

Table D-2. Level 0 File Label Record (Continued)

ITEM BYTES FIELD NAME COMMENTS

ITEMS 46 TO 50 REPEAT 40 TIMES. THE NUMBER OF REPS CONTAINING
NONFILL DATA IS GIVEN BY ITEM #45; THE REMAINING REPS ARE FILL.
THE ACTUAL BYTE OFFSET FROM THE BEGINNING OF THE RECORD OF AN ITEM
IN THE "NTH" REP IS DETERMINED BY ADDING 292+ (N-1)*56 TO THE BYTE
VALUE LISTED BELOW FOR THE ITEM.

46
47
48
49
50

51

1
25
29
37
53

2533

- filename

- edit rerun #

edit program version

- edit run date/time

- data type "R/T" or "P/B"

- 24 edit file
- 28 edit file
- 36 edit file
- 52 edit file
- 56 edit file

Z2z22=22
I

- X fill characters see Note 5

Length of nonrepeating fields (bytes) 292
Length of nonrepeating fields & 40 edit files (bytes) 2532

NOTES:

1.

2

Identifies version number of the Level 0 format.

For virtual files (see Note 3) the number of physical records
in the file is contained in the continuation file label
record

Identifies which of the four time period types supported
under this format are contained by the files, as follows:
" QL" = quick look data, approximately 92 EMAFs
"24HR" = 24 hours of data, approximately 1319 EMAFs

"VIRT" = data covering a virtual time range
"NRT" = near real-time data, approximately 15 EMAFs

Contains the UARS day number of the day in which the first
EMAF of the file occurs.

When fixed in a SOLSTICE or QUALITY file, the file label
record is not filled out at all. When fixed in any other
type of UARS Level 0 file, the file label record is filled
out to the length of the data record for that file type, as
specified in Tables D-6 to D-20.

LEVEL 0 FILE FORMATS

Table D-3. Level 0 Data Set Information

e’
FILE TYPE DATA SET ID DATA SET #
CLAES CLS 1
HALOE HAL 2
HRDI HRD 3
ISAMS ISM 4
MLS MLS 5
PEM PEM 6
SOLSTICE SOL 7
SUSIM "aA" SMA 8
SUSIM "B" SMB 9
WINDII WIN 10
ACRIM ACR 11
ENGINEERING ENG 12 =
SPACECRAFT SCT 13
OBC OBC 14
QUALITY QAL 15

The file label record is intended to carry information that is of
interest to the operations personnel of the GTDM DCF and the CDHF.
The following paragraphs are provided to clarify the meaning of the
less obvious fields of the file label record.

o Item 4: format version number - Over the life of the UARS
mission, several Level 0 file formats may be necessary. This
document will define those formats and the format version
number field will distinguish between thenm.

o Item 5,6 and 7: physical records - As described earlier, a
physical record is intended to correspond to one EMAF, but in
certain cases an EMAF may be split into two physical records.
Item 5 identifies the file label record as the first physical
record of the file, Item 6 identifies the number of physical =~

D-6

LEVEL 0 FILE FORMATS

records per EMAF and Item 7 identifies the number of physical
records in the file.

Item 8: CCB version number - The configuration controlled
version number assigned to the Level 0 file when cataloged on
the CDHF.

Item 9: The cycle number associated with the cataloged file.
This field has meaning only for a file that has been created
via the UCSS data transfer services as described in the UCSS
User's Guide (Reference 9).

Items 11 to 14: ATC - These fields correspond to the first
ATC value occurring in the first and last EMAF of the file.
The ATC will only be processed to remove obvious spike
errors. In the event that these values are not available in
the telemetry, the DCF will compute the value expected.

Items 15 to 22: JATC - These fields contain the Julian
format Absolute Time Code (JATC) values corresponding to the
smoothed ATC values of items 11 to 14. The values are
obtained by converting the ATC values to Greenwich Mean Time
(GMT) and reformatting to Julian format. These fields
correspond to the first value occurring in the first and last
EMAF of the file. 1In the event that these values are not
available in the telemetry, the DCF will compute the value
expected.

Item 36: type of data time period - The Level 0 files are
intended to contain 24 hours of telemetry, one quick-look or
near real-time pass, or a virtual time range of data. This
field distinguishes between the four possibilities.

Item 37: UARS day number - Each 24 hour time period

(0 to 400 hours GMT) will be numbered, beginning with 1 and
incremented by 1 where 1 is the time period (day) in which
the UARS launch occurs. This field will contain that value.
Time period ID values from 9000 to 9999 are reserved to
indicate test data sets.

Items 39 & 40: decommutation run description - These fields
contain information produced by the DCF for quality control
and traceability of the decommutation processing performed to
produce the associated file.

Items 41 to 44: merge run description - These fields contain
information produced by the DCF for quality control and
traceability of the merge processing performed to produce the
associated file.

Items 45 to 50: edit file description - These fields contain
information produced by the DCF for quality control and
traceability of the edit files and the edit processing

D=7

LEVEL 0 FILE FORMATS

performed for each of the edit files for up to 40 edit files.
e

D.2.3 LEVEL 0 VIRTUAL FILES

A Level 0 virtual file is a file containing Level 0 data covering
a user-specified time range. The virtual Level 0 data records are
copied from the Level 0 file(s) that contain data for the requested
time range. The virtual Level 0 data files are created by the UCSS
data transfer services as described in the UCSS User's Guide
(Reference 9). The following paragraphs describe how the Level 0
format defined in this appendix accommodates the wvirtual Level 0
files.

A virtual Level 0 file is distinguished from normal Level 0 files
by the value "VIRT" in item 35 of the file label record format (see
Table D-2). The following additional comments apply to the file label
record:

o Item 4: format version - Virtual Level 0 files can only be
constructed using Level 0 files with the same format version
number.

o Item 7: # of physical records in file - This field will be
blank and the corresponding information will be contained in
the continuation file label record (see Table D-4).

o Item 8: CCB version number - The value is the version number
of the Level 0 file used as the source for the first data
record in the virtual Level 0 file.

o Item 9: cycle number - The value is the cycle number of the
Level 0 file used as the source for the first data record in
the virtual Level 0 file.

o Items 11 to 14: ATC - These fields should be ignored for
virtual files.

o Items 15 to 2: JATC - These fields will contain the JATC
times corresponding to the first and last EMAFs in the
virtual file.

o Items 23 to 5 and 37 to 0: These fields should be ignored
for virtual Level 0 files.

LEVEL 0 FILE FORMATS

Table D-4. Level 0 Continuation File Label Record

ITEM
NO. BYTE FIELD NAME COMMENTS
1 1 -4 satellite id 'UARS'
2 5 -8 data set # see Table D-3
3 9 - 12 data set id see Table D-3
4 13 - 16 physical record count
5 17 - 24 number of physical records in file
6 25 - 28 number of time/version entries..... see Note
7 29 + (I-1)*36 - JATC: year - start time for version
32 + (I-1)*36 entry
8 33 + (I-1)*36 - JATC: day - start time for version
36 + (I-1)*36 entry
9 37 + (I-1)*36 - JATC: milliseconds - start time of
44 + (I-1)*36 version entry
10 45 + (I-1)*36 - JATC: microseconds - start time of
48 + (I-1)*36 version entry
11 49 + (I-1)*36 - CCB version number for version
56 + (I-1)*36 entry
12 57 + (I-1)*36 - cycle number for version entry
64 + (I-1)*36

REPEAT ITEMS 7 - 12 FOR I = 1 to number time/version entries (Item 6)

Note: If there are no changes in version/cycle for the virtual file,
this number will be zero and no time/version entries will follow.

D.2.3.1 Continuation File Label Record Format

A continuation file label record is present only when the type of
data time period field in the file label record (see Table D-2)
indicates that the file covers a virtual time period. Table D-4
describes the format of the continuation file label record. The UCSS
data transfer software creates this continuation record in order to
identify the CCB version and cycle numbers of the source files from
which the Level 0 file was generated. The number of version entries
in the record is determined by the number of changes in the CCB
version and cycle numbers of the source files. Each version entry in
this record defines the version number for a specific time range. The
time in the version entry specifies the start time of the range and
the time of the next version entry specifies the start time of the
next range.

LEVEL 0 FILE FORMATS

D.2.4 DATA RECORD HEADER INFORMATION

The data record header format is presented in Table D-5. This
information is contained in the first 64 bytes of the record. Of
these 64 bytes, 4 bytes are spare. The record header information
pertains to the EMAF from which the associated data words were
extracted.

D-10

LEVEL 0 FILE FORMATS

Table D-5. Level 0 Data Record Header

ITEM
NO. BYTES NAME TYPE COMMENTS
1 1 - 2 instrument data set # I see Table D-1
2 3 - 4 record type I see Note 1
3 5 - 8 physical record count I
e 9 - 10 16-bit SMIF Count - begin EMAF I
5 11 - 12 ATC - Epoch year I
6 13 - 20 ATC - 0.5 msec count I
7 21 - 22 JATC:year - begin EMAF I year
8 23 - 24 JATC:day - begin EMAF I day
9 25 - 28 JATC:msec - begin EMAF I millisecond
10 29 - 30 JATC:usec - begin EMAF I microsecond
11 31 - 32 # of SMIFs of fill I
12 33 - 34 # of SMIFs with bad sync I
13 35 - 36 # of SMIFs with CRC error I
14 37 - 38 FLAG - EMAF gap I see Note 2
15 39 - 40 FLAG - abnormal ATC increment I see Note 3
16 41 - 44 EMAF rate (msec/EMAF) I
17 45 - 48 spare ’
18 49 - 56 SMAF fill flags bit see Note 4
19 57 - 64 SMAF parity flags bit see Note 5
NOTES:
1. Identifies record type as follows:
1 = data record, SMAFs 0 to 31
2 = data record, SMAFs 32 to 63
3 = data record, SMAFs 0 to 63
2. Interpret as follows:
0 = "no gap"
1 = "current EMAF follows a gap"
3. Interpret as follows:
0 = "normal ATC increment from last EMAF"
1 = "abnormal ATC increment"
4., 1 bit for each SMAF in the EMAF. Interpret as follows:
0 = "all SMIFs in SMAF contain data"
1 = "1 or more SMIFs contain fill"
5 bit for each SMAF in the EMAF. Interpret as follows:

(N

= "all SMIFs in SMAF have good CRC"
= "] or more SMIFs have CRC errors or contain fill"

LEVEL 0 FILE FORMATS

The comments made in Section D.2.2 on the SMIF counter, ATC, and
JATC are applicable to Items 4 to/0 of the data record header. The ~
ATC and the JATC are the first of the EMAF; the 16 bit SMIF counter is
taken from the first SMIF of the EMAF.

D.2.5 DATA RECORD BODY

The body of the data record contains the telemetry from one of
the instruments, the subcommutated engineering telemetry, the OBC
telemetry, the spacecraft telemetry, or the detailed quality
information for one EMAF. The detailed data record formats for each
of these types of files are presented in Table D-6 to D-20.

Table D-6. CLAES Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #32,SMIF=I,SMAF=J 1 0 + 64 + 12 * (I + 32 * J)
3 WORD #33,SMIF=I,SMAF=J 1 1 + 64 + 12 * (I + 32 * J)
4 WORD #34,SMIF=I,SMAF=J 1 2 + 64 + 12 * (I + 32 * J) _—
5 WORD #35,SMIF=I,SMAF=J 1 3+ 64 + 12 * (I + 32 * J)
6 WORD #36,SMIF=I,SMAF=J 1 4 + 64 + 12 * (I + 32 * J)
7 WORD #37,SMIF=I,SMAF=J 1 5 + 64 + 12 * (I + 32 * J)
8 WORD #38,SMIF=I,SMAF=J 1 6 + 64 + 12 * (I + 32 * J)
9 WORD #39,SMIF=I, SMAF=J 1 7 + 64 + 12 * (I + 32 * J)
10 WORD #40,SMIF=I, SMAF=J 1 8 + 64 + 12 * (I + 32 * J)
h 30 | WORD #41,SMIF=I,SMAF=J 1 9 + 64 + 12 * (I + 32 * J)
12 WORD #42,SMIF=I,SMAF=J y | 10 + 64 + 12 * (I + 32 * J)
13 WORD #43,SMIF=I,SMAF=J 1 11 + 64 + 12 * (I + 32 * J)
REPEAT ITEM NO.'S 2-13 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 24640

LEVEL 0 FILE FORMATS

Table D-7. HALOE Level 0 Data Record

HALOE RECORD TYPE #1

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #44,SMIF=I,SMAF=J 1 0 + 64 + 16 * (I + 32 * J)
3 WORD #45,SMIF=I, SMAF=J 1 1+ 64 + 16 * (I + 32 * J)
4 WORD #46,SMIF=I,SMAF=J 1 2 + 64 + 16 * (I + 32 * J)
5 WORD #47,SMIF=1,SMAF=J 1 3+ 64 + 16 * (I + 32 * J)
6 WORD #48,SMIF=I,SMAF=J 1 4 + 64 + 16 * (I + 32 * J)
7 WORD #49,SMIF=I,SMAF=J 1 5+ 64 + 16 * (I + 32 * J)
8 WORD #50,SMIF=I, SMAF=J ; | 6 + 64 + 16 * (I + 32 * J)
9 WORD #51,SMIF=I,SMAF=J 1 7 + 64 + 16 * (I + 32 * J)
10 WORD #52,SMIF=I,SMAF=J 1 8 + 64 + 16 * (I + 32 * J)
11 WORD #53,SMIF=I,SMAF=J 1 9 + 64 + 16 * (I + 32 * J)
12 WORD #54,SMIF=I,SMAF=J 1 10 + 64 + 16 * (I + 32 * J)
13 WORD #55,SMIF=I,SMAF=J 1 11 + 64 + 16 * (I + 32 * J)
14 WORD #56,SMIF=1,SMAF=J 1 12 + 64 + 16 * (I + 32 * J)
15 WORD #57,SMIF=I,SMAF=J 1 13 + 64 + 16 * (I + 32 * J)
16 WORD #58,SMIF=I,SMAF=J 1 14 + 64 + 16 * (I + 32 * J)
17 WORD #59,SMIF=I,SMAF=J 1 15 + 64 + 16 * (I + 32 * J)
REPEAT ITEM NO.'S 2-17 FOR J := 0 TO 31
AND FOR I := 0 TO 31
Total Record Length (bytes): 16448

HALOE RECORD TYPE #2

HALOE RECORD TYPE #2 IS IDENTICAL TO HALOE RECORD TYPE #1
WITH THE FOLLOWING EXCEPTIONS:

- THE RECORD HEADER CONTENT CHANGES AS FOLLOWS:

-- VALUE FOR "RECORD TYPE" CHANGES FROM 1 TO 2
-= THE PHYSICAL RECORD COUNT INCREMENTS

- THE RANGE OF THE LOOP ON J BECOMES "32 TO 63"

D-13

LEVEL 0 FILE FORMATS
Table D-8. HRDI Level 0 Data Record

HRDI RECORD TYPE #1

ITEM
NO. DESCRIPTION LENGTH OFFSET

1 RECORD HEADER 64 0

2 WORD #60,SMIF=I,SMAF=J i 0 + 64 + 19 * (I + 32 * J)

3 WORD #61,SMIF=I,SMAF=J 1 1+ 64 + 19 * (I + 32 * J)
4 WORD #62,SMIF=I,SMAF=J 1 2 + 64 + 19 * (I + 32 * J)

5 WORD #63,SMIF=I,SMAF=J i 3+ 64 + 19 * (I + 32 % J)

6 WORD #64,SMIF=I,SMAF=J 1 4 + 64 + 19 * (I + 32 * J)

7 WORD #65,SMIF=I,SMAF=J 1 5+ 64 + 19 * (I + 32 * J)

8 WORD #66,SMIF=I,SMAF=J 1 6 + 64 + 19 * (I + 32 * J)

9 WORD #67,SMIF=I,SMAF=J 1 7 + 64 + 19 * (I + 32 * J)
10 WORD #68,SMIF=I, SMAF=J i 8 + 64 + 19 * (I + 32 * J)
11 WORD #69,SMIF=I,SMAF=J n i 9 + 64 + 19 * (I + 32 * J)
12 WORD #70,SMIF=I,SMAF=J 1 10 + 64 + 19 * (I + 32 * J)
13 WORD #71,SMIF=I,SMAF=J 1 11 + 64 + 19 * (I + 32 * J)
14 WORD #72,SMIF=I,SMAF=J 1 12 + 64 + 19 * (I + 32 * J)
15 WORD #73,SMIF=I,SMAF=J i 13 + 64 + 19 * (I + 32 * J)
16 WORD #74,SMIF=I,SMAF=J 1 14 + 64 + 19 * (I + 32 * J)
17 WORD #75,SMIF=I,SMAF=J 1 15 + 64 + 19 * (I + 32 * J)
18 WORD #76,SMIF=I,SMAF=J 1 16 + 64 + 19 * (I + 32 * J)
19 WORD #77,SMIF=I1,SMAF=J 1 17 + 64 + 19 * (I + 32 * J)
20 WORD #78,SMIF=I,SMAF=J 1 18 + 64 + 19 * (I + 32 * J)

REPEAT ITEM NO.'S 2-20 FOR J := 0 TO 31
AND FOR I := 0 TO 31
Total Record Length (bytes): 19520

HRDI RECORD TYPE #2

HRDI RECORD TYPE #2 IS IDENTICAL TO HRDI RECORD TYPE #1
WITH THE FOLLOWING EXCEPTIONS:

- THE RECORD HEADER CONTENT CHANGES AS FOLLOWS:

—=- VALUE FOR "RECORD TYPE" CHANGES FROM 1 TO 2
== THE PHYSICAL RECORD COUNT INCREMENTS

- THE RANGE OF THE LOOP ON J BECOMES "32 TO 63"

LEVEL 0 FILE FORMATS

Table D-9. ISAMS Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0]
2 WORD #80,SMIF=I,SMAF=J 1 0+ 64 + 4 * (I + 32 % J)
3 WORD #81,SMIF=I, SMAF=J 1 1 +64 + 4 * (I + 32 % J)
4 WORD #82,SMIF=I,SMAF=J 1 2+ 64+ 4 % (I + 32 % J)
5 WORD #83,SMIF=I,SMAF=J 1 3+ 64+ 4 % (I + 32 % 7J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256
Table D-10. MLS Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
b RECORD HEADER 64 0
2 WORD #84,SMIF=I,SMAF=J 1 0+ 64 + 5 % (I + 32 * J)
3 WORD #85,SMIF=I1,SMAF=J 1 1 +64 + 5 * (I + 32 % J)
4 WORD #86,SMIF=I,SMAF=J 1 2 +64 + 5 % (I + 32 * J)
5 WORD #87,SMIF=I1,SMAF=J 1 3 +64 + 5 % (I + 32 * J)
6 WORD #88,SMIF=I,SMAF=J 1 4 + 64 + 5 * (I + 32 * J)
REPEAT ITEM NO.'S 2-6 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 10304

LEVEL 0 FILE FORMATS

Table D-11. PEM Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #92,SMIF=I1,SMAF=J 1 0O + 64 + 14 * (I + 32 * J)
3 WORD #93,SMIF=I,SMAF=J 1 1+ 64 + 14 * (I + 32 * J)
4 WORD #94,SMIF=I,SMAF=J B | 2 + 64 + 14 * (I + 32 * J)
5 WORD #95,SMIF=I,SMAF=J 1 3+ 64 + 14 * (I + 32 * J)
6 WORD #96,SMIF=I,SMAF=J 1 4 + 64 + 14 * (I + 32 * J)
7 WORD #97,SMIF=I,SMAF=J 1 5+ 64 + 14 * (I + 32 * J)
8 WORD #98,SMIF=I,SMAF=J i i 6 + 64 + 14 * (I + 32 * J)
9 WORD #99,SMIF=I,SMAF=J 1 7 + 64 + 14 * (I + 32 * J)
10 WORD #100,SMIF=I,SMAF=J 1 8 + 64 + 14 * (I + 32 * J)
11 WORD #101,SMIF=I,SMAF=J 1 9 + 64 + 14 * (I + 32 * J)
12 WORD #102,SMIF=I,SMAF=J 1 10 + 64 + 14 * (I + 32 * J)
13 WORD #103,SMIF=I,SMAF=J i i 11 + 64 + 14 * (I + 32 * J)
14 WORD #104,SMIF=I,SMAF=J 1 12 + 64 + 14 * (I + 32 * J)
15 WORD #105,SMIF=I,SMAF=J 1 13 + 64 + 14 * (I + 32 * J)
REPEAT ITEM NO.'S 2-15 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 28736
Table D-12. SOLSTICE Level 0 Data Record
ITEM .
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #106,SMIF=I,SMAF=J 1 0+ 64 + 1 * (I + 32 * J)
REPEAT ITEM NO. 2 FOR J := 0 TO 63
AND FOR I := 0 TO 31
3 FILL 420 2112
Total Record Length (bytes): 2532

LEVEL 0 FILE FORMATS

Table D-13. SUSIM "A" Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #108,SMIF=I,SMAF=J 1 0 +64 + 4 * (I + 32 * J)
3 WORD #110,SMIF=I,SMAF=J 1 1 +64 + 4 % (I + 32 % J)
4 WORD #112,SMIF=I,SMAF=J 1 2 + 64 + 4 * (I + 32 * J)
5 WORD #114,SMIF=I,SMAF=J 1 3+ 64+ 4 % (I + 32 * J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256
Table D-14. SUSIM "B" Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #109,SMIF=I,SMAF=J 1 0 +64 + 4 % (I + 32 % J)
3 WORD #111,SMIF=I,SMAF=J 1 1+ 64 + 4 % (I + 32 * J)
4 WORD #113,SMIF=I,SMAF=J 1 2 + 64 + 4 * (I + 32 * J)
5 WORD #115,SMIF=I,SMAF=J 1 3+ 64 + 4 * (I + 32 * J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256

LEVEL 0 FILE FORMATS

Table D-15. WINDII Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #116,SMIF=I,SMAF=J 1 0+ 64 + 8 * (I + 32 * J)
3 WORD #117,SMIF=I, SMAF=J 1 1 +64 + 8 * (I + 32 * J)
4 WORD #118,SMIF=I, SMAF=J 1 2 +64 + 8 * (I + 32 % J)
5 WORD #119,SMIF=I,SMAF=J 1 3+64 + 8 * (I + 32 * J)
6 WORD #120,SMIF=I,SMAF=J 1 4 + 64 + 8 * (I + 32 * J)
7 WORD #121,SMIF=I,SMAF=J 1 5+ 64 + 8 * (I + 32 % J)
8 WORD #122,SMIF=I,SMAF=J 1 6 + 64 + 8 * (I + 32 * J)
9 WORD #123,SMIF=I, SMAF=J 1 7 +64 + 8 % (I + 32 * J)
REPEAT ITEM NO.'S 2-9 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 16448
Table D-16. ACRIM Level 0 Data Record
ITEM
NO. DESCRIPTION LENGTH OFFSET
: | RECORD HEADER 64 0
2 WORD #28,SMIF=I,SMAF=J 1 0+ 64 + 2 * (I + 32 * J)
3 WORD #29,SMIF=I,SMAF=J 1 1 +64 + 2 * (I + 32 * J)
REPEAT ITEM NO.'S 2 & 3 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 4160

LEVEL 0 FILE FORMATS

Table D-17. Engineering Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0]
2 WORD #8,SMIF=I,SMAF=J 1 0+ 64 + 4 % (I + 32 * J)
3 WORD #9,SMIF=I,SMAF=J 1 1 +64 + 4 % (I + 32 * J)
4 WORD #10,SMIF=I,SMAF=J 1 2 + 64 + 4 % (I + 32 * J)
5 WORD #11,SMIF=I,SMAF=J 1 3 +64 + 4 % (I + 32 % J)
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 8256

D-19

LEVEL 0 FILE FORMATS

Table D-18. Spacecraft Level 0 Data Record

SPACECRAFT RECORD TYPE #1

ITEM
NO. DESCRIPTION LENGTH OFFSET

1 RECORD HEADER 64 0

2 WORD #3,SMIF=I,SMAF=J 1 0 + 64 + 21 * (I + 32 * J)

3 WORD #6,SMIF=I,SMAF=J 1 1+ 64 + 21 * (I + 32 % J)

4 WORD #7,SMIF=I,SMAF=J 1 2 + 64 + 21 * (I + 32 * J)

5 WORD #19,SMIF=I,SMAF=J 1 3+ 64 + 21 * (I + 32 % J)

€ WORD #20,SMIF=I,SMAF=J 1 4 + 64+ 21 * (I + 32 * J)

7 WORD #21,SMIF=I,SMAF=J 1 5+ 64 + 21 * (I + 32 * J)

8 WORD #22,SMIF=I,SMAF=J 1 6 + 64 + 21 * (I + 32 * J)

9 WORD #23,SMIF=I,SMAF=J 1 7 + 64 + 21 * (I + 32 * J)
10 WORD #24,SMIF=I,SMAF=J 1 8 + 64 + 21 * (I + 32 * J)
11 WORD #25,SMIF=I,SMAF=J 1 9 + 64 + 21 * (I + 32 * J)
12 WORD #26,SMIF=I,SMAF=J 1 10 + 64 + 21 * (I + 32 * J)
13 WORD #27,SMIF=I,SMAF=J 1 11 + 64 + 21 * (I + 32 * J)
14 WORD #30,SMIF=I,SMAF=J 3§ 12 + 64 + 21 * (I + 32 * J)
15 WORD #31,SMIF=I,SMAF=J 1 13 + 64 + 21 * (I + 32 * J)
16 WORD #79,SMIF=I,SMAF=J 1 14 + 64 + 21 * (I + 32 * J)
17 WORD #89,SMIF=I,SMAF=J 1 15 + 64 + 21 * (I + 32 * J)
18 WORD #90,SMIF=I,SMAF=J 1 16 + 64 + 21 * (I + 32 * J)
19 WORD #91,SMIF=I,SMAF=J 1 17 + 64 + 21 * (I + 32 * J)
20 WORD #107,SMIF=I,SMAF=J 1 18 + 64 + 21 * (I + 32 * J)
21 WORD #124,SMIF=I,SMAF=J 1 19 + 64 + 21 * (I + 32 * J)
22 WORD #125,SMIF=I,SMAF=J 1 20 + 64 + 21 * (I + 32 * J)

REPEAT ITEM NO.'S 2-20 FOR J := 0 TO 31
AND FOR I := 0 TO 31
Total Record Length (bytes): 21568

SPACECRAFT RECORD TYPE #2

SPACECRAFT RECORD TYPE #2 IS IDENTICAL TO SPACECRAFT
RECORD TYPE #1 WITH THE FOLLOWING EXCEPTIONS:

- THE RECORD HEADER CONTENT CHANGES AS FOLLOWS:

== VALUE FOR "RECORD TYPE" CHANGES FROM 1 TO 2
== THE PHYSICAL RECORD COUNT INCREMENTS

- THE RANGE OF THE LOOP ON J BECOMES "32 TO 63"

LEVEL 0 FILE FORMATS

Table D-19. OBC Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
1 RECORD HEADER 64 0
2 WORD #12,SMIF=I,SMAF=J 1 0O+ 64 + 7 % (I + 32 % J)
3 WORD #13,SMIF=I,SMAF=J 3 1 +64 + 7 * (I + 32 * J)
4 WORD #14,SMIF=I,SMAF=J 1 2+ 64+ 7 * (I + 32 % J)
5 WORD #15,SMIF=I,SMAF=J 1 3 +64 + 7 * (I + 32 % J)
6 WORD #16,SMIF=I, SMAF=J 1 4 + 64 + 7 * (I + 32 * J)
7 WORD #17,SMIF=I,SMAF=J 1 5+ 64 + 7 * (I + 32 * J)
8 WORD #18,SMIF=I, SMAF=J 1 6 + 64 + 7 * (I + 32 * J)
REPEAT ITEM NO.'S 2-8 FOR J := 0 TO 63
AND FOR I := 0 TO 31
Total Record Length (bytes): 14400

LEVEL 0 FILE FORMATS

Table D-20. Quality Level 0 Data Record

ITEM
NO. DESCRIPTION LENGTH OFFSET
| RECORD HEADER 64 0
2 SMIF FILL SMAF=J,SMIF=0 TO 7 1 0 + 64 + 4 * J
3 SMIF FILL SMAF=J,SMIF=8 TO 15 1 1+ 64 + 4 * J
4 SMIF FILL SMAF=J,SMIF=16 TO 23 1 2 + 64 + 4 * J
5 SMIF FILL SMAF=J,SMIF=24 TO 31 1 3 + 64 + 4 * J
REPEAT ITEM NO.'S 2-5 FOR J := 0 TO 63
6 SMIF CRC SMAF=J,SMIF=0 TO 7 1 0 + 64 + 256 + 4 * J
7 SMIF CRC SMAF=J,SMIF=8 TO 15 1 1 + 64 + 256 + 4 * J
8 SMIF CRC SMAF=J,SMIF=16 TO 23 1 2 + 64 + 256 + 4 * J
9 SMIF CRC SMAF=J,SMIF=24 TO 31 1 3 + 64 + 256 + 4 * J
REPEAT ITEM NO.'S 6-9 FOR J := 0 TO 63
10 FILL) 1956 576
Total Record Length (bytes): 2532
NOTE:

- Each bit of a SMIF Fill byte corresponds to a SMIF as
described above and is interpreted as follows:
0 = "the corresponding SMIF contains data"
1 = "the corresponding SMIF is all fill data"

- Each bit of a SMIF CRC byte corresponds to a SMIF as
described above and is interpreted as follows:
0 "the corresponding SMIF has a good CRC"
1 "the corresponding SMIF has a bad CRC or is all fill
data"

o

The first item of the data record formats as shown in
Tables D-6 to D-20 is the 64 byte record header starting at byte 0 of
the record. Each subsequent item in the tables account for one of the
telemetry words assigned to that instrument, engineering, OBC,
quality, or spacecraft data. The location of the telemetry word in
the record is given in terms of an offset and a length.

For example, a given instrument may be assigned 12 words of
telemetry per SMIF. One of the words of telemetry contained in SMIF i
of SMAF j is stored in a one byte location in the record, with an
offset from the beginning of the record specified by the "offset"
field for the word. The offset value accounts for the number of words

D-22

N’

LEVEL 0 FILE FORMATS

preceding the desired word in the SMIF, the 64 byte record header, and
the product of the number of SMIFs preceding SMIF i of SMAF j with the
number of words per SMIF, 12 words in this case.

D.2.6 MULTIPART RECORDS

All logical records are intended to contain one EMAF of data,
each of a specific type. As mentioned above, certain logical record
types (HALOE, HRDI and Spacecraft) consist of two physical records.
These record types are indicated below as record type 1 or record
type 2, the first record type carrying the first 32 SMAFs of the EMAF,
and the second record type carrying the last 32. 1In these cases, the
type 1 and type 2 records are interleaved, record type 1 occurring
first followed by record type 2.

D.3 ABSOLUTE TIME CODE (ATC) JUMPS AND SPLIT EMAFS

The time that appears in the EMAF header is based on the Absolute
Time Code (ATC) that appears 16 times in each EMAF. It is corrected
such that the first bit of the EMAF has as its timetag the EMAF header
time.

The ATCs within the EMAF increment throughout the EMAF and,
nominally, there is a 65536 millisecond difference between two
successive EMAF header times. ATC drift management appears as an
occurrence of a difference of 65536.5 milliseconds rather than the
nominal difference of 65536 milliseconds between successive EMAF
header times. If the caller does not examine the microsecond of ATC
field in the EMAF header, then differences of 65537 are seen
interspersed within groups of the nominal 65536 differences. A clock
jump is an unanticipated change in the value of the ATC as it varies
through the EMAF

The DCF handles ATC (or clock) jumps as follows:

The EMAF in which the jump occurs is split into two EMAFs. The
first EMAF contains the timetag (the EMAF header time) associated with
the original ATC stream. The second EMAF contains a timetag
associated with the changed ATC stream. The former EMAF contains data
up to the point of the time jump. The latter contains data beginning
at that point until the end of the EMAF.

If the jump is forward; i.e., the ATC value increments more than
expected between two adjacently reported times, then the timetag of
the first EMAF has a value less than that of the second EMAF. If the
jump is backward, then the timetag of the first EMAF is greater than
the timetag of the second EMAF. Reading sequentially, the EMAF times
are out of order in this 'backward jump' condition.

D=-23

APPENDIX E

LEVEL 3 FILE FORMATS

It is intended that all UARS scientific instrument data be stored
in one or more of the common file formats at Level 3. These Level 3
file formats are referred to as 3AT (time referenced), 3AL (latitude
referenced), or 3AS/3BS (solar data). The access to files in these
common formats is achieved by use of certain of the UCSS services.

E.1 GENERAL COMMENTS

As with all UARS scientific instrument data, Level 3 data is
maintained in files containing data from one instrument for one UARS
day. In addition, at Level 3, a file contains data for only one
parameter or species.

E.1.1 LEVEL 3AT DATA

A Level 3AT file consists of a time-ordered collection of data
records. Each record contains a single array of data values of one
parameter or species type for a specific time. The data array is
organized according to the rules of the UARS standard data array (see
Section E.2). The reference time values at which Level 3AT records
are created are common across all Level 3AT files from all
instruments. The Level 3AT data record time is the time associated
with SMIF 0 of SMAF 32 of the EMAF at Level 0.

The Level 3AT files are stored as flat files without any index
structure. All records of a given file are of the same length.

The actual record length is dependent upon the maximum number of
data points that can be stored in the data records.

If the file is a virtual file, the label record may be followed
by one or more continuation file label records. The remaining records
in the file are data records.

LEVEL 3 FILE FORMATS

Level 3AT files are generated by the HALOE, MLS, ISAMS, CLAES,
HRDI, PEM, and WINDII instrument investigations. p—

E.1.2 LEVEL 3AL DATA

A Level 3AL data file consists of a collection of profiles of
atmospheric data that have been indexed by the latitude and time
values associated with the profiles. Each record of the Level 3AL
file contains a single array of data values for one parameter or
species type for a specific time. The data array is organized
according to the rules of the UARS standard data array (see
Section E.2). The index key for the record is based on the
concatenation of the latitude and time values associated with the
profile. The standard latitude values at which Level 3AL records may
be written are from -88.0 degrees to +88.0 degrees latitude in
4.0 degree increments. There is no standard time rule that applies to
the Level 3AL profiles.

All records of a given file are of the same length. The actual
record length is dependent upon the maximum number of data points that
can be stored in the data records.

If the file is a virtual file, the label record may be followed
by one or more continuation file label records. The remaining records
in the file are data records. et

Level 3AL files are generated by the MLS, ISAMS, CLAES, HRDI,
PEM, and WINDII instrument investigations.

E.1.3 LEVEL 3AS/3BS DATA

A Level 3AS/3BS file contains a single data record for each UARS
day. Each data record contains a single array representing a daily
mean solar spectrum.

Additional information will also be stored in the record via a
parameter array. Included in this information will be the irradiance
values for 4 coronal lines, Lyman Alpha, a magnesium line, a calcium
line, and the mean solar distance.

The Level 3S/3BS files are stored as flat files without any index
structure. BAll records of a given file are of the same length. The
actual record length is dependent upon the maximum number of data
points that can be stored in the data record.

Level 3AS/3BS files are generated by the SUSIM and SOLSTICE
instrument investigations.

LEVEL 3 FILE FORMATS

E.1.4 LEVEL 3A PARAMETER FILES

A Level 3A Parameter File provides a means of associating
parameters with Level 3 data. The parameters are defined by each
Principal Investigator (PI) for his/her own Level 3 data. Level 3
Parameter Files will contain information describing the context of the
Level 3 data with each Level 3 data record associated with a
corresponding parameter file record.

Level 3A Parameter Files are identified by their own distinct
level. The levels used to identify Level 3A parameter files are
Level 3TP which refers to time ordered parameter files, and Level 3LP
which refers to parameter files indexed by both latitude and time
value. Level 3TP files have the same organization as the Level 3AT
files (see Section E.1.1). Level 3LP files have the same organization
as the Level 3AL file (see Section E.1.2).

E.2 UARS STANDARD DATA ARRAY

The UARS standard data array is the common data structure used
for storing UARS data so that it can be accessed and interpreted
properly by the entire UARS community. Since the UARS instruments are
not all performing the same type of measurements, the interpretation
of this standard data array is instrument dependent. The position of
a data value within the standard array for a given instrument has a
fixed meaning.

It should be noted that when a Level 3AT, 3TP, 3AL, 3LP, 3AS, or
3BS file is created, the full size of the UARS standard data array may
not be required. 1In this case, only the values required are stored
and the starting index for the first stored data point relative to the
full UARS standard data array is stored with it.

E.2.1 PRESSURE REFERENCED ARRAY

The index into the data array may correspond to standard pressure
levels. These standard pressure level values in millibars are given

by:
P(i) = 1000.0 * (10**(-i/6)) , i= 01, ss0 35

The CLAES, HRDI, ISAMS, MLS, HALOE and WINDII instrument
investigations are expected to use pressure referenced data arrays.

LEVEL 3 FILE FORMATS

E.2.2 ALTITUDE REFERENCED ARRAY
A

The index into the data array may correspond to standard altitude
levels. These standard altitude level values in kilometers are given
by:

2(i) =5 * 1, i <= 12
Z2(i) = 60 + (i - 12) * 3 , 13 <= i <= 32
z2(i) = 120 + (i - 32) * 5 , 33 <= i <= 88.

The HRDI, PEM, and WINDII instrument investigations are expected to
use altitude referenced data arrays. The HRDI and WINDII instrument
investigations are expected to produce both pressure and altitude
referenced data arrays for both Level 3AT and 3AL data. To
distinguish between the pressure referenced and altitude referenced
data for the same species at the same data level, it will be necessary
to include additional descriptive information with the SUBTYPE name
for the data file. For example, a pressure referenced temperature
profile may have the SUBTYPE name of "TEMP_P", and an altitude
referenced wind component profile may have the SUBTYPE name of
"ZONWIN1 Z".

E.2.3 WAVELENGTH REFERENCED ARRAY

The index into the standard data array may correspond to standard __
wavelength values. Each element of the array is associated with a
1.0 nanometer (nm) interval centered on the half nm from 115 nm to
425 nm. Each element of the data array contains the averaged set of
observations for the wavelength bin associated with it.

The SUSIM and SOLSTICE instrument investigations use the
wavelength referenced data array.

E.3 LEVEL 3 FILE FORMAT

The following sections provide a description of the file format
for the Level 3 files.

E.3.1 SFDU STANDARD INFORMATION

The Level 3AT, 3TP, 3AS, and 3BS files are constructed so as to
adhere to the Standard Formatted Data Unit (SFDU) structure and
construction rules (Reference 10). Level 3AT/3TP and 3AS/3BS data are
stored in this format at the level of a single file. That is, the
descriptor records that make these files consistent with the SFDU
standard are analogous to an envelope; the "letter" contained within
the envelope is a file. Other SFDU construction schemes are possible, =

E-4

LEVEL 3 FILE FORMATS

but this is the approach selected by the UARS Science Team.

The following paragraphs define the descriptor record
("envelope") that is required by the SFDU construction rules. This is
followed by the definition of the UARS specific records ("letter")
that make up the Level 3AT, 3TP, 3AS, or 3BS files.

The SFDU standards for UARS Level 3 data specify that the first
40 bytes of the file should contain header information that identifies
the file as an SFDU-formatted file and that "points" to detailed file
and record structure documentation. For Level 3AT, 3TP, 3AS, and 3BS
files this information appears as the first 40 bytes in the first
record of the file. However, for Level 3AL or 3TP files, because the
files are indexed, the required 40 bytes of SFDU information will
appear in one record with 20 bytes of record index data preceding it.

It should be noted that as long as the UCSS Level 3AT, 3AL, 3TP,
3LP, 3AS, or 3BS read and write routines are used, either in
production processing or using simulated services at the RAC, the user
need not concern himself with the SFDU header information.

E.3.2 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AT/3TP AND 3AS/3BS FILES

The SFDU construction rules require that at least two Type,
Length, Value (TLV) objects be used to construct a file. In general,
the Type or T field contains information that can be used to properly
interpret the contents of the V field; the L field is the length of
the V field in bytes. The first TLV is referred to as a type 2
object, the T[Z] field identifying the file as SFDU compliant; L[Z] is
the length of V[Z] in bytes. 1In the case of Level 3 data, the V[2Z]
field is the second TLV object and is referred to as a type I TLV
object. The T[I] field identifies the file as a product of the UARS
Program; L[I] is the length of V[I] in bytes. The V[I] field is the
"letter" containing the UARS specific Level 3 file information.

The first record in a Level 3AT, 3TP, 3AS, or 3BS file contains
20 bytes of T[Z]) and L[Z]) information followed by 20 bytes of T[I] and
L[I] information. The format of these fields is described in
Tables E-1 and Table E-2.

LEVEL 3 FILE FORMATS

Table E-1. SFDU T[Z]) and L[Z] Format for Level 3AT/3TP or
Level 3AS/3BS Files

ITEM FIELD

NO. NAME BYTE SUBFIELD NAME COMMENTS
5 | TYPE 0-3 control authority identifier woesp»

2 TYPE 4 version identifier nyw

3 TYPE 5 class identifier nzw

& TYPE 6-7 spare "oo"

5 TYPE 8-11 | data descriptive record identifier | "0001"

6 LENGTH |12-19 length see Note
Note: The length field will contain a number in ASCII format binary

number specifying the length in bytes of the corresponding VALUE

field.

as the V[I) field which is the UARS Level 3 file.

The VALUE fields includes the T[I] and L[I] fields as well

LEVEL 3 FILE FORMATS

Table E-2. SFDU T[I] and L[I] Format for Level 3AT/3TP or
Level 3AS/3BS Files
ITEM FIELD
NO. NAME BYTE SUBFIELD NAME COMMENTS
1 TYPE 0-3 control authority identifier see Note 1
2 TYPE 4 version identifier i
3 TYPE 5 class identifier wn
4 TYPE 6-7 spare "oo"
5 TYPE 8-11| data descriptive record identifier see Note 2
6 LENGTH |12-19| length see Note 3
Notes:
1 The control authority for the UARS data is 'ZURS'.
2 The data description record for UARS is TBD.
3 The length field will contain a number in ASCII format
specifying the length of the V[I]field, which is the
UARS Level 3 file.
E.3.3 FILE LABEL RECORD FOR LEVEL 3AT/3TP FILES

presented in Table E-3.
fields.

record size exceeds the file label record size.

The file label record format for Level 3AT and 3TP files is
All file label record fields are ASCII
The file label record is padded with zero fill when the data

Table E-3 Label Record Format for Level 3AT/3TP Files (1 of 2)
ITEM|BYTE
NO. |OFFSET FIELD NAME COMMENTS
I 0 satellite identifier 'UARS'
2 4 record type ¢ 31!
3 6 instrument identifier
4 18 data subtype or species
B 30 format version number ' 1
6 34 physical record count ! 1t
7 42 number of continuation records for file label
8 46 number of physical records in file
9 54 file creation time in VAX VMS ASCII format
10 ¥7 year (3 digits) for first data record
11 80 day of year for first data record
12 83 milliseconds of day for first data record
13 91 year (3 digits) for last data record
14 94 day of year for last data record
15 97 milliseconds of day for last data record
16 105 data level
17 108 UARS day number
18 112 number of data points per record (3AT)
number of 32-bit words (3TP)
19 116 base index of data point values see Note 1
20 120 record length in bytes see Note 2
21 125 CCB version number
22 134 file cycle number see Note 3
23 139 virtual file flag see Note 4
24 140 total number of time/version entries in file see Note 5

N’

Table E-3 Label Record Format for Level 3AT/3TP Files (Cont.)

ITEM OFFSET FIELD NAME COMMENTS
-
25 144 number of time/version entries in record
26 148 year for first version entry
27 151 day of year for first version entry
28 154 milliseconds of day for first version entry
29 162 version number of first version entry
30 171 cycle number of first version entry
B year for nth veréion entry
B+3 day of year for nth version entry
B+6 milliseconds of day for nth version entry
B+14 version number of nth version entry
B+23 cycle number of nth version entry
B+28
~ Legend: B = 148 + 28%*(n - 1) n=1, 2,3, ...

Notes:
1 Not applicable for Level 3TP records.
2 Minimum record size is 148 bytes.
3 Supplied only during file creation via RAC data transfer.

4 L] 1
IVI

physical file
virtual file created via RAC data transfer

5 There is a time/version entry for each consecutive change in the
version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

LEVEL 3 FILE FORMATS

E.3.4 CONTINUATION LABEL RECORD FOR LEVEL 3AT/3TP AND 3AS/3BS FILES

The continuation label record format is presented in Table E-4.
All fields in this record are in ASCII format. This record is present
only when the file label record indicates that the file is a virtual
file created via the RAC transfer services and there is insufficient

space in the file label record for all the time/version entries
needed.

s’

LEVEL 3 FILE FORMATS

Table E-4. Continuation Label Record Format for Level 3AT/3TP or
Level 3AS/3BS Files

ITEM BYTE
NO. [OFFSET FIELD NAME COMMENTS
1 0 satellite identifier 'UARS'
2 4 lrecord type rat
3 6 instrument identifier
4 18 data subtype or species
5 30 format version number A 1!
6 34 physical record count ' 1.9
7 42 number of time/version entries in record
8 46 spare
9 48 start year for first version entry
10 51 start day of year for first version entry
11 54 start msec of day for first version entry
12 62 version number of first version entry
13 71 Icycle number of first version entry
B start year for néh version entry
B+3 start day of year for nth version entry
B+6 start msec of day for nth version entry
B+14 version number of nth version
B+23 cycle number of nth version
Legend: B = 48 + 28%*(n -1) n=11: 2; sss

E.3.5 DATA RECORD FOR LEVEL 3AT FILES

The data record format for a Level 3AT file is presented in
Table E-5. The data record contains data values in the UARS standard
data array (see Section E.2) for the time range specified in the

E=-11

LEVEL 3 FILE FORMATS

A fill value is used to indicate missing data

points within a record. This fill value, X'00008000', is a reserved
value that is not a valid floating point number. The data record is
padded when the file label record size exceeds the data record size.

file's label record.

12

td
|

LEVEL 3 FILE FORMATS

Table E-5. Data Record Format for Level 3AT or Level 3AS/3BS Files
ITEM| BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
5 | 0 satellite identifier c 'UARS'
2 4 record type C £ 3
3 6 instrument identifier c
4 18 physical record count €
5 26 spare c
6 28 total number of points in the record I
7 32 number of actual points (np) I
8 36 starting index of first actual point I
9 40 record time in UDTF format T see Note
10 48 latitude R see Note
11 52 longitude R see Note
12 56 local solar time (LST) R see Note
13 60 solar zenith angle (SZA) R see Note
14 64 data value for first point in record R
data value for lést point in record
B quality for first point in record R
quality for last.point in record R
Legend: C = character I = integer R = real
T = time in UDTF format B = 64 + 4*total number of points
Notes:
1 For solar instruments (Level 3AS/3BS file) the milliseconds

2

portion of the UDTF time is 0.

Not applicable for solar instruments (Level 3AS/3BS file)

E-13

LEVEL 3 FILE FORMATS

E.3.6 DATA RECORD FOR LEVEL 3TP FILES

The data record format for a Level 3TP file is presented in
Table E-6. The data record contains parameter values associated with
the corresponding Level 3AT record of the appropriate Level 3AT data
file, for the time specified in the Level 3AT record's header.

Table E-6. Data Record Format for a Level 3TP File

ITEM| BYTE
NO. [OFFSET FIELD NAME FORMAT| COMMENTS
1 0 satellite identifier c 'UARS'
2 4 record type C LI L
3 6 instrument identifier e
4 18 physical record count &
5 26 spare c
6 28 maximum number of 32-bit words I
in the record
7 32 not used
8 36 not used
9 40 record time in UDTF format T
10 48 latitude R
2 o | 52 longitude R
12 56 spare C
13 64 number of 32-bit parameter words I
14 68 first parameter word ¢
B last parameter word C
Legend: C = character I = integer R = real
T = time in UDTF format B = 64 + 4*number of parameter words

E-14

LEVEL 3 FILE FORMATS

E.3.7 SFDU DESCRIPTOR FORMATS FOR LEVEL 3AL/3LP FILES

N’

The SFDU descriptor records for Level 3AL or 3LP are constructed
in the same manner as for Level 3AT, 3TP, 3AS, or 3BS files with the
exception that the SFDU information in the records is preceded by the
record index key field.

The first record in a Level 3AL/3LP file contains the record
20 byte key followed by 20 bytes of T[Z] and L[Z] information and
20 bytes of T[I] and L[I] information. The format of these fields is
described in Table E7 and Table ES8.

Table E-7. SFDU T[Z] and L[Z] Format for Level 3AL/3LP Files
ITEM| FIELD
NO.| NAME BYTE SUBFIELD NAME COMMENTS
1 KEY 0-19 record key see Note 1
2 TYPE 20-23 control’ authority identifier ueesp"
3 TYPE 24 version identifier wym
" 4 TYPE 25 class identifier wzn
5 TYPE 26-27 spare "oo"
6 TYPE 28-31 data descriptive record identifier ®0001"
7 LENGTH 32-39 length see Note 2
Notes:

1 The record key has the following structure:

chars 1-4 "1001"
5-10 blank

11-12 "“O:"
13-19 blank

2 0 11} 0 L1}

2 The length field will contain a number in ASCII format specifying
the length in bytes of the corresponding VALUE field. The VALUE
field includes the T[I] and L[I]) fields as well as the V[I]
field which is the UARS Level 3AL or 3LP file.

P’

E=15

LEVEL 3 FILE FORMATS

Table E-8. SFDU T[I] and L[I] Format for Level 3AL/3LP Files

ITEM FIELD

NO. NAME BYTE SUBFIELD NAME COMMENTS

1 TYPE 40-43 control authority identifier see Note 1
2 TYPE 44 version identifier e

3 TYPE 45 class identifier ol

4 TYPE 46-47 spare oo

5 TYPE 48-51 data descriptive record identifier see Note 2
6 LENGTH |52-59 length see Note 3
Notes:

1 The control authority for the UARS data is 'ZURS'.

2 The data description record for UARS is TBD.

3 The length field will contain a binary number specifying the
length of the V[I] field, which is the UARS Level 3AL or 3LP
file.

E.3.8 FILE LABEL RECORD FOR LEVEL 3AL/3LP FILES

size.

The file label record format is presented in Table E-9. All file
label record fields are ASCII fields. The file label record is padded
with zero fill when the data record size exceeds the file label record

E-16

p

Table E-9. Label Record Format for Level 3AL/3LP Files (1 of 2)
ITEM| BYTE
NO. |OFFSET FIELD NAME COMMENTS
1 0 record key see Note 1
2 20 satellite identifier 'UARS'
3 24 record type L
4 26 instrument identifier
b 38 data subtype or species
6 50 format version number
7 54 physical record count ' 1!
8 62 number of continuation records for file label
9 66 number of physical records in file
10 74 file creation time in VAX VMS ASCII format
11 97 year (3 digits) for earliest data record
12 100 day of year for earliest data record
13 103 milliseconds of day for earliest data record
14 111 year (3 digits) for latest data record
15 114 day of year for latest data record
16 117 milliseconds of day for latest data record
17 125 data level
18 128 UARS day number
19 132 max. number of data points per record (3AL)
max. number of 32-bit words per record (3LP)
20 136 base index of data point values see Note 2
21 140 record length in bytes see Note 3
22 145 minimum latitude for records in file
23 148 maximum latitude for records in file
24 151 CCB version number

Table E-9.

ITEM OFFSET

25 160
26 165
27 166
28 170
29 174
30 177
31 180
32 188
33 197
B
B+3
B+6
B+14
B+23
B+28
Legend: B

Label Record Format for Level 3AL/3LP Files
FIELD NAME

file cycle number

virtual file flag

total number of time/version entries in file
number of time/version entries in record
year for first version entry

day of year for first version entry
milliseconds of day for first version entry
version number of first version entry

cycle number of first version entry

year for nth veréion entry

day of year for nth version entry
milliseconds of day for nth version entry
version number of nth version entry

cycle number of nth version entry

174 + 28*%(n - 1) =iy B B s

(Cont.)

COMMENTS

see Note 4
see Note 5

see Note 6

Table E-9. Label Record Format for Level 3AL/3LP Files (Cont.)

Notes:

1 The record key has the following structure:
chars 1-4 '1002'
5-10 blank
11=12 '0:?
13-19 blank
20 'o!

2 Not applicable for Level 3LP files
3 Minimum record size is 174 bytes
4 Supplied only during file creation via RAC data transfer.

5 *+ 1 physical file

virtual file created via RAC data transfer

nn

6 There is a time/version entry for each consecutive change in the
version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

E-19

LEVEL 3 FILE FORMATS

E.3.9 CONTINUATION LABEL RECORD FOR LEVEL 3AL/3LP FILES

The continuation label record format is presented in Table E-10.
All fields in this record are in ASCII format. This record is present
only when the file label record indicates that the file is a virtual
file and there is insufficient space in the file label record for all
the time/version entries needed.

E-20

LEVEL 3 FILE FORMATS

Table E-10. Continuation Label Record Format for Level 3AL/3LP Files
ITEM|OFFSET FIELD NAME COMMENTS
1 0 record key see Note
2 20 satellite identifier 'UARS'
3 24 record type L 2¢
4 26 instrument identifier
5 38 data subtype or species
6 50 format version number
7 54 physical record count
8 62 number of time/version entries in record
9 66 spare
10 68 start year for first version entry
11 71 start day of year for first version entry
12 74 start msec of day for first version entry
13 82 version number of first version entry
14 91 cycle number of first version entry
B start year for néh version entry
B+3 start day of year for nth version entry
B+6 start msec of day for nth version entry
B+14 version number of nth version
B+23 cycle number of nth version
Legend: B 68 + 28*%(n - 1) n=1, 2, .
Note: The record key has the following structure:
chars 1-4 (1000 + record number) in ASCII
5-10 blank
11-12 ':!

13-19 blank

20

lOl

LEVEL 3 FILE FORMATS

E.3.10 DATA RECORD FOR LEVEL 3AL FILES

The data record format is presented in Table E-11. The data
record contains data values in the UARS standard data array (see
Section E.2) for the latitude and time ranges specified in the file's
label record. A fill value is used to indicate missing data points
within a record. This fill value, X'00008000', is a reserved value
that is not a valid floating point number. The data record is padded
when the file label record size exceeds the data record size.

E-22

Table E-11.

Data Record Format for a Level 3AL File

ITEM BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
1 0] record key C see Note
2 20 satellite identifier C 'UARS'
3 24 record type € ' 3"
4 26 instrument identifier &
5 38 physical record count c
6 46 spare C
7 48 total number of points in the record §
8 52 number of actual points (np) T
9 56 starting index of first actual point I
10 60 record time in UDTF format T
11 68 latitude R
12 72 longitude R
13 76 local solar time (LST) R
14 80 solar zenith angle (SZA) R
15 84 data value for first point in record R
data value for l;st point in record R
B quality for first point in record R
quality for 1ast.point in record R
Legend: C = character T = time in UDTF format
I = integer B = 84 + 4*(total number of points)
R = real
Note: The record key has the following structure:

chars 1-4

5

(1000 + 90 + latitude + 1 + number of records in label)

in ASCII
blank

6-11 date portion of UDTF record-time in ASCII

12

13-20 millisecond portion of UDTF record-time in ASCII

E-23

LEVEL 3 FILE FORMATS

E.3.11 DATA RECORD FOR LEVEL 3LP FILES

The data record format for a Level 3LP file is presented in
Table E-12. The data record contains parameter values associated with
the corresponding Level 3AL record of the appropriate Level 3AL data
file, for the time specified in the file label record. A fill value
of '0' is used where there are no parameter values.

E-24

LEVEL 3 FILE FORMATS

Table E-12. Data Record Format for a Level 3LP File

ITEM BYTE
NO. [OFFSET FIELD NAME FORMAT| COMMENTS
1 0 record key c see Note
2 20 satellite id c 'UARS'
3 24 record type c vz
4 26 instrument identifier &
5 38 physical record count c
6 46 spare ¢
7 48 maximum number of 32-bit words I
8 52 not used
9 56 not used
10 60 record time in UDTF format T
11 68 latitude R
12 72 longitude R
13 76 spare .
14 84 number of 32-bit parameter words I
15 88 first parameter word =
B last parameter word
Legend: C = character I = integer R = real
T = time in UDTF format B = 84 + 4*number of parameter words

Note: The record key has the following structure:
chars 1-4 (1000 + 90 + latitude + 1 + number of records in label)

in ASCII
5 blank
6-11 date portion of UDTF record-time in ASCII
12 LA

13-20 millisecond portion of UDTF record-time in ASCII

LEVEL 3 FILE FORMATS

E.3.12 FILE LABEL RECORD FOR LEVEL 3AS/3BS FILES

The file label record format for a Level 3AS or 3BS file is
presented in Table E-13. All file label record fields are ASCII
fields the file label record is padded with zero fill when the data
record size exceeds the file label record size.

26

t
|

Table E-13 Label Record Format for Level 3AS/3BS File (1 of 2)

ITEM|BYTE
| — NO. |OFFSET FIELD NAME COMMENTS
1 0 satellite identifier 'UARS'
2 4 record type rae
3 6 instrument identifier
4 18 data subtype or species
5 30 format version number
6 34 physical record count i 17
(7 blanks)
7 42 number of continuation records for file label
8 46 number of physical records in file
9 54 file creation time in VAX VMS ASCII format
10 77 year (3 digits) for first data record
11 80 day of year for first data record
-~ 12 83 milliseconds of day for first data record
13 91 year (3 digits) for last data record
14 94 day of year for last data record
15 97 milliseconds of day for last data record
16 105 data level
17 108 UARS day number
18 112 number of data points per record
19 116 base wavelength of data point values
20 122 record length in bytes see Note 1
21 127 CCB version number
22 136 file cycle number see Note 2
23 141 virtual file flag see Note 3
_ 24 142 total number of time/version entries in file see Note 4

E-27

Table E-13.

ITEM OFFSET

FIELD NAME

number of time/version entries in record
year for first version entry

day of year for first version entry
milliseconds of day for first version entry
version number of first version entry

cycle number of first version entry

year for nth veréion entry

day of year for nth version entry
milliseconds of day for nth version entry
version number of nth version entry

cycle number of nth version entry

= 150 + 28%(n - 1) n=1, 2, 3,

Minimum record size is 150 bytes.

Label Record Format for Level 3AS/3BS File (Cont.)

COMMENTS

Supplied only during file creation via RAC data transfer.

25 146
26 150
27 153
28 156
29 164
30 173
B
B+3
B+6
B+14
B+23
B+28
Legend: B
Notes:
1
2
3 T =
Wy =
4 There

physical file
virtual file created via RAC data transfer

is a time/version entry for each consecutive change in the
version number of the source files used to produce this file.
Only used for virtual files created via RAC data transfer.

(o]
|

28

LEVEL 3 FILE FORMATS

E.3.13 CONTINUATION LABEL RECORD FOR LEVEL 3AS/3BS FILES

The continuation label record format for Level 3AS and 3BS files
is as described in Section E.3.4

E.3.14 DATA RECORD FOR LEVEL 3AS/3BS FILES

The data record format for a Level 3AS or 3BS file is presented
in Table E-14. The data record contains data values in the UARS
standard data array (see Section E.2) for a specific UARS day. It
also contains a parameter array consisting of pairs of parameter names
and their corresponding values. The Mean Solar Distance (MSD)
parameter MUST be presented in the parameter array for each record. A
fill value is used to indicate missing data points within a record.
This fill values, X'00008000', is a reserved value that is not a valid
floating point number.

E-29

Table E-14.

Data Record Format for a 3AS/3BS File (1 of 2)

ITEM BYTE
NO. |OFFSET FIELD NAME FORMAT| COMMENTS
1 0 satellite identifier e 'UARS'
2 4 record type € 34
3 6 instrument identifier &
4 18 physical record count Cc
5 26 spare C
6 28 total number of points in the record T
7 32 number of actual points (np) i 3
8 36 starting wavelength of first actual R
point
9 40 record time in UDTF format T see Note
10 48 spare c
11 52 spare e
12 56 spare C
13 64 data value for first point in record R
data value for lést point in record R
B quality for first point in record R
quality for last'point in record R
N Number of parameter pairs I
P First parameter name e
P+20 First parameter value c
P;1560 Last parameter néme c
P+1580| Last parameter value C

E-30

Table E-14. Data Record Format for a 3AS/3BS File (Continued)

Legend: C = character T = time in UDTF format
I = integer B = 64 + 4*total number of points
R = real N = B + 4* total number of points
P=N4+“4

Note: For solar instruments (Level 3AS file) the milliseconds portion
of the UDTF time is 0.

E-31

APPENDIX F

ERROR HANDLING

F.1 STATUS CODES

A 32-bit status code is returned to the user's program to
indicate the completion status for each of the UCSS software support
services. These status codes are defined to the system using the VAX
Message Utility. The Message Utility defines a symbolic name for each
of the conditions and the user's program can use the symbolic name to
check for a particular status.

In the RAC simulated and production environments, the UCSS
software support services only return nonfatal status to the user's
program. The standard SS$_NORMAL condition code is used to indicate a
normal status for all of these services. The status codes applicable
to each interface are identified in Section 3. 1In the analysis
environment, all status codes are returned to the user.

The user's program should check the status code after calling a
UCSS service. These status codes are normally warning indicators, but
they may have a significant meaning to the program. For example, a
status code from a read service might indicate an end of data
condition and the user's program should not attempt reads beyond the
requested time. The symbolic name for the status condition is used to
check for a specific condition. Figure F-1 provides an example of
status checking. Note that the user's program must specify all status
symbolic names that are explicitly tested as external references.

ERROR HANDLING
Figure F-1. UCSS Software Support Service Status Checking Example

PROGRAM LEVELO

EXTERNAL PFA_NOOLDFILE

PASS_FAIL = 'PASS'
CALL PGINIT (PARAMS, STRTIME, STPTIME, UARS DAY)

CALL OPENLO (INST ID, STRTIME, STPTIME, LID, STATUS)

CHECK OPEN STATUS FOR NO DATA CONDITION

0NN

IF (STATUS .EQ. %LOC(PFA NOOLDFILE)) THEN
PASS_FAIL = 'FAIL'
COMMENTS = 'FAILED FIRST LEVEL O OPEN'
ELSE

ENDIF
CALL PGTERM(PASS_FAIL, STATUS, COMMENTS)
END

F.2 FATAL CONDITIONS

The UCSS software support services may also detect error
conditions that prevent further processing. When the UCSS services
detect a fatal condition, processing is terminated and the program is
marked as failed. The fatal error condition appears on the program
summary report with any appropriate error comments.

Most of the fatal conditions detected by the UCSS services relate
to problems in calling sequence arguments. Conditions detected
include: '

- Missing required argument

- Argument is of wrong type or size

- Invalid values

ERROR HANDLING

- Inconsistent arguments

In addition, the services detect problems in the ordering of some
calls (e.g. calling READLO before OPENLO) or missing required calls
(e.g. no PGINIT call). Table F-1 provides a list of the fatal error
conditions detected by the UCSS services. Some fatal conditions are
detected within VMS services and the user should refer to the

appropriate VMS documentation.

Table F-1.

SYMBOLIC NAME

UCSS Software Support Services Fatal Errors

DESCRIPTION

POSSIBLE CAUSES

PFA_ATTRCNTNEG

PFA _ATTROMITTED

PFA BADEPOCHYR

PFA_DBRECERR

PFA_DUPVIRDAY

PFA_EARLYEOF

PFA_FILALRDDEASG

PFA_ FILALRDYCLS

PFA_FILENOTOPEN

PFA_FILSTOPEN

PFA_GENUNREC

PFA_ILUDTF

PFA_ILVMSTI

Attribute count is
negative

Required user supplied.
attribute not provided

No valid ASCO09 base epoch
year found

Unable to record
processing error in data

base

Duplicate virtual UARS
day specified

Unexpected end of file
encountered when
positioning to or reading
a data record

File already deassigned

File already closed

File has not been opened

Deassigned file is still
open

General unrecoverable

error

Invalid UDTF time provided

Invalid VMS time provided

Bad number of attributes
supplied as an argument
in CLOSELF or DASLID

Required user supplied
attribute not provided
to DASLID(see Table 3-4)

Probable telemetry data
error

Data base access error.

Error in FILE_PARAMS

Probable error in data
file format

Two calls to DASLID to
deassign the same LID
without corresponding
assign call

Two calls to CLOSELF to
close the same LID
without corresponding
open call

Called DASLID before
closing file

UCSS software error.
Should not be reported
to user.

Possible error in UDTF
time specification in
PROGRAM_PARAMS namelist

Possible error in VMS
time specification in
PROGRAM_PARAMS namelist

-

S’

Table F-1.

SYMBOLIC NAME

PFA INAPSOLRDAY

PFA INCFILUSE

PFA_ INCOMPEMAF

PFA_INCONNUMREC

PFA_ INCONRECLEN

PFA_ INCONRECTYP

PFA_INCORNUMARG

PFA_INVACCESSMD

PFA_INVALDOY

PFA_INVALIDMSD

DESCRIPTION

Requested date does not
match UARS day of the file

Inconsistent file usage
specified by OLD NEW

Incomplete Level 0 EMAF

File record count does
not exceed number of label
records

Inconsistent record
length

Level 0 record type field
is invalid

Service called with
incorrect number of
arguments

Invalid access mode for

file type

Invalid day of year

Invalid mean solar
distance

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Inconsistency between
UARS day specified in
FILE PARAMS and day in
file.

Attempted to open or
assign a held file as
new or old.

Missing one of the two
part EMAF records.
Problem in data file
format

Data error in file label
record

Data problem. Record
length for the file in
catalog does not match
actual record length of
file.

Level 0 data problem.
Record type for one
record EMAFs is not 3.
Record type for

two record EMAFs is not
1 or 2.

Missing or extra
arguments in subroutine
call

Attempted to write to a
read only file by
calling a Level 3A write
service for a cataloged
file.

Day of year not within
range of 1 to 366

Data problem. Mean
solar distance value
retrieved from solar
data record by READL3S
is negative or zero.

Table F-1. UCSS Software Support Services Fatal Errors (Continued)

SYMBOLIC NAME

PFA_INVALMO

PFA_INVARGDATTP

PFA_INVARGSUB

PFA_INVARGTYP

PFA_INVBASNDX

PFA_INVBASWVLEN

PFA_INVCALDAY

PFA_INVCALMAT

PFA INVCMATCHV

PFA_INVCONVDAY

PFA_INVCYCARG

PFA_INVDATALEV

DESCRIPTION
Invalid month

Invalid argument data type

Internal error in
arguments subtype

Internal error in argument
type

Invalid base index in
Level 3A file label record

Invalid base wavelength
in level 3 solar file
label record

Invalid day of month

Invalid CALIBRATION_MATCH
namelist parameter

Invalid calibration match
rule specified

Invalid UARS_DAY obtained
by conversion from a UDTF
time

File cycle argument is not
between 1 and 31 inclusive

Wrong UCSS service called
for the data level

POSSIBLE CAUSES

Month not within range

of

1 to 12

Error in subroutine call

UCSS software problem.
Contact UCSS software
maintenance.

UCSS software problem.
Contact UCSS software
maintenance.

Base index is not
between 0 and 100

Base wavelength is not
between 115.5 and 425.5

nm.

Day of month not within
range of 1 to 31

CALIBRATION MATCH must

be

'"PREV', TNEXT',

"EXCT', or 'NEAR'

Invalid DMATCH argument
to ASGCAL

Inappropriate launch
date used for conversion

Error in call to
SETVERCY

Called the wrong
service for the data
level associated with
the LID. Examples:

L.

Called CLOSELF for a
file that is not a

Level 0, 3AT, 3AL,

3AS, or 3BS file

instead of calling
DASLID

Called Level 0

service to access

Level 3A data or vice =~
versa

Table F-1. UCSS

SYMBOLIC NAME

PFA_INVDATARNG

PFA INVDAYARG

PFA_INVDEFCMATCH

PFA _INVDEFNDLEV

PFA_INVDEFODLEV

PFA_INVDEFOLDNEW

PFA_INVDISTARG

PFA INVDLEARG

PFA_INVESIZEARG

PFA_INVFDISP

PFA_INVFDISPARG

PFA_INVFILETYP

Software Support Services Fatal Errors (Continued)

DESCRIPTION

Requested data range does
not overlap virtual file
data range

Invalid UARS day argument
Invalid CALIBRATION_MATCH
in DEFAULT PARAMS namelist

Invalid NEW_DATA_LEVEL in
DEFAULT PARAMS namelist

Invalid OLD_DATA LEVEL in
DEFAULT PARAMS namelist

Invalid OLD_NEW parameter
in DEFAULT_PARAMS namelist

Invalid distance argument

Invalid data level
argument

Invalid estimated file
size argument

File disposition with type
with type of file accessed

Invalid file disposition
argument

Invalid file type
specified for usage of
file

POSSIBLE CAUSES

Problem with START INDEX
START WVLNGTH or
NUM_POINTS in read

UARS_DAY is negative

CALIBRATION_MATCH must
be 'PREV', 'NEXT','EXCT',
or 'NEAR'

First character of
NEW_DATA LEVEL must be
Iy, 10, 131, pr fiela
must be blank

First character of
OLD_DATA_LEVEL must be
'O', lll' '2., I3l’ or
field must be blank

OLD_NEW parameter must
be 'OLD' or 'NEW'

Distance flag is not
'I=AU' or 'UNCORRECTED'
in call to READL3S

Data level argument is
not one of the defined
data levels

SIZE argument is zero

FDISP parameter is not
valid for the type of
file accessed and the
UCSS is unable to
determine requested
position. Called DASLID
with 'CAT' dispositions
for a scratch file.

Invalid FDISP in CLOSELF
or DASLID call (not
'CAT', 'FREE', or
'"HOLD')

UCSS software problem
Contact UCSS software
maintenance.

Table F-1.
SYMBOLIC NAME

PFA_INVFILUTIN

PFA INVFLXUARG

PFA_INVHDRDASET

PFA_INVHDRDATLV

PFA_INVHDRDATTP

PFA_INVHDRDAY

PFA_ INVHDRLAT

PFA_INVHDRSUBTP

PFA_INVHDRTMRNG

PFA_INVINDEXARG

PFA_INVLATGRID

PFA_INVLATLONG

PFA_INVLSTSZA

DESCRIPTION

Invalid file utilization
indicator in UCSS internal
table

Invalid flux unit argument

Data set in LO file label
does not match expected
value

Invalid data level in
Level 3A file label

Instrument id in file
label does not match
expected value

UARS day in file label
does not match expected
value

Invalid latitude range
field in label record of
Level 3AL data file

Data subtype in file label
does not match expected
value

Invalid time range in file
label record

Invalid index argument

Invalid latitude grid
value

Invalid latitude or
longitude

Invalid local solar time
and/or solar angle
calculated

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

UCSS software problem.
Contact UCSS software
maintenance.

Flux unit specified in
call to READL3S is
invalid

Data-type is not
consistent with data set
id. Wrong Level 0 file
specified or bad data in
file

Data problem

Wrong Level 3 file
specified or bad data in
file

Wrong file specified or
bad data in file

Data problem

Wrong Level 3 file
specified or bad data in
file

Data problem

Index argument is not
between 0 and 100

Invalid latitude value
in WRITEL3AL, READL3AL,
WRITEL3LP, or READL3LP

Invalid latitude or
longitude wvalue in
WRITEL3AT, OPENL3AL,
WRITEL3TP, or OPENL3LP

UCSS software problem.
Contact UCSS software
maintenance

Table F-1.
SYMBOLIC NAME

PFA INVMAXPMS

PFA_INVMAXPTS

PFA_INVNEGDYARG

PFA INVNMLDLEV

PFA_INVNMLPARM

PFA_INVNUMPRMS

PFA_INVNUMPTS

DESCRIPTION

Specified number of params
is greater than max params

in file

Invalid maximum number of
data points

Correlative UARS day arg.
is not between -99999 and
9999

Invalid DATA_ LEVEL
parameter in FILE_ PARMS
namelist

Invalid combination of
parameters in FILE PARMS
namelist

Invalid number of
parameters specified for
a parameter file

Invalid number of points
arguments

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Used a number of
parameters value greater
than number of
parameters returned from
the open in reading a
parameter file

1. Invalid MAX_ POINTS
argument to OPENL3AT
or OPENL3AL when
creating a new file

2. Invalid maximum
points field in
Level 3A file
label record

Invalid UARS day in call
to ASGCOR

First character of
DATA_LEVEL must be '0',
tiv, '2', '3' or field
must be blank

Wrong combination of
parameters. specified for
file

The number of parameters
specified for file in
READL3TP and READL3LP
exceeds the maximum
value allowed for the
file

1. Invalid NUM_POINTS
argument to READL3AT
or READL3AL.
Inconsistent with
START_ INDEX and
OPENL3AT or OPEN3AL
MAX POINTS value.

2. Invalid NUM POINTS
argument to WRITEL3AT
or WRITEL3AL.
Inconsistent with
START_INDEX and
MAX POINTS supplied
to OPENL3AT or
OPENL3AL.

Table F-1.

SYMBOLIC NAME

PFA_INVNUMRECS

PFA_INVODNWHLD

PFA_INVOLDNWARG

PFA_ INVPGCSARG

PFA_INVPRGPMSIZ

PFA_INVPSEUD

PFA INVQLCODARG

PFA_INVRECPEMAF

PFA INVRECRNG

PFA_INVRECSARG

PFA INVRECTYP

ucss

Software Support Services Fatal Errors (Continued)

DESCRIPTION

Physical record count in
file label record is
invalid

Invalid OLD_NEW namelist
parameters

Invalid OLD NEW argument

Invalid program completion
status argument

Invaild program parameter
table size argument

Invalid use of

pseudo-virtual file

Quicklook code argument
is not between -100 and 30

Invalid number of records
per EMAF field in file
label record

Invalid record time range
specification

Number of records argument
does not exceed zero

Unexpected record type
value

POSSIBLE CAUSES

Data problem

OLD_NEW must be 'OLD',
'NEW', or 'HELD'
OLD_NEW argument to
open or assign call

is not 'OLD', 'NEW',
or 'HELD'

PASS_FAIL argument to
PGTERM is not 'PASS' or
'FAIL'

PARAM TBL SIZE argument
to PGINIT is not between
1 and 50

Pseudo-virtual file
specified as held or in
multi-file virtual input
file

Bad Quicklook pass code
specified in call to
OPENQL for Analysis
Services

Level 0 data problem

STRT DATTIM exceeds
STOP_DATTIM in READL3AT,
READL3AL, READL3TP, or
READL3LP

Bad value of MAX DIM or
MAX DAYS specified in
READL3AL, READL3AT,
READL3S, READL3LP, or
READL3TP

Data problem. Level 0
data record type is not
1, 2, or 3.

Table F-1. UCSS

SYMBOLIC NAME

PFA_INVRULEARG

PFA_INVSTRINDX

PFA_INVSTRLEN

PFA_INVSTRWVLN

PFA_INVSVC

PFA_INVTIMPRD

Software Support Services Fatal Errors (Continued)

DESCRIPTION

Version/cycle rule
argument is not between 0
and 9

Start index less than base
index of Level 3A file

Incorrect character string
length

Start wavelength is
outside allowed range

Wrong service called for
given file type

Invalid time period type
in file label record

POSSIBLE CAUSES

Bad version or cycle
specified in call to
SETVERCY for Analysis
Services

START_INDEX in READL3AT
is less than the
BASE_INDEX in OPENL3AT.
START_ INDEX in READL3AL
less than the BASE_INDEX
in OPENL3AL.

Character string
improperly sized

1. START_WVLNGTH in
READL3S is less than
BASE WVLNGTH in
OPENL3S.

2. START WVLNGTH exceeds
BASE_WVLNGTH
+ MAX_NUM_VALUES
- NUM_VALUES.

START WVLNGTH and
NUM_VALUES are
supplied in the call
to READL3S.
BASE_WVLNGTH and
MAX NUM _VALUES are
supplied in the call
to OPENL3S.

Used QUALRD or QUALQL to
read non-QUALITY data or
used OPENL3AT to read

Level 3AS/BS solar data

Data problem. The type
of data time period
field in the Level 0
file header is invalid
(not ' QL', '24HR',
'"VIRT' or 'NEAR')

Table F-1.

SYMBOLIC NAME

PFA_ INVTMERNG

PFA_INVTMVERS

PFA_INVUDAYRNGE

PFA_INVUDTFARG

PFA_ INVUDTFDAY

PFA_INVUDTFMSEC

PFA_INVUDTFYR

PFA_INVVERSARG

PFA_INVVERTIM

PFA_INVVIRSPEC

PFA_ INVVFLAG

DESCRIPTION

Invalid time range
parameters

Inconsistent time fields
in version entries of the
Level 3A label record

Invalid UARS day range

Invalid UDTF time
Invalid day of year in
UDTF time

Invalid milliseconds of
day in UDTF time
Invalid UDTF year

CCB version argument is
not between 0 and 9999

inclusive

Inconsistent time in time/
version entries

Invalid virtual file
specification

Invalid virtual flag in
Level 3A file label record

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

1. STRT DATTIM exceeds
STOP_DATTIM in
PGINIT. In simulated
environment, a
problem in the
PROGRAM PARAMS
namelist.

2. STRT_DATTIM exceeds
STOP_DATTIM in
OPENLO, OPENL3AT, or
OPENL3AL

Data problem

UCSS Software error.
Contact UCSS Software
maintenance

UDTF time argument not a
valid time

UDTF day of year not
between 1 and 366

UDTF milliseconds of day
not between 0 and
86399999

No year on UDTF time

Bad version specified in
call to SETVERCY for
Analysis Services

Data problem. Times in
the time version entries
in the label record(s)
are not increasing.

More than one physical
file specified for a
non-virtual input file

Data problem

Table F-1.
SYMBOLIC NAME

PFA_INVWVLUARG

PFA_JOBALRDYRUN

PFA_LIDINUSE

PFA_LIDNOREUSE

PFA_ LIDNOTOPEN

PFA_LIDOTHERUSE

PFA MISINITPARM

PFA_MISSARG

PFA_MISSMSD

PFA_MSDCONVERR

PFA NOCLSNEW

PFA_ NODASGNEW

DESCRIPTION

Invalid wavelength unit
argument

Current job has already
been run

Specified LID in use

Attempted to reuse the LID
that is assigned held file
or a newly cataloged file

File corresponding to LID
is not open

Specified LID is reserved
for other use

Missing required parameter
in FILE_PARAMS namelist

Missing a required
argument

Missing mean solar
distance

Mean solar distance
conversion error from
OTSSCVTTD

Failed to close a new
Level 3A file

Failed to deassign an new
Level 1 or 2 file

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Wavelength unit
specified in OPENL3S or
READL3S is not 'NM',
'STANDARD', 'A',
'MICRON', or 'CM'

UCSS Software error.
Contact UCSS software
maintenance

Reused LID without
calling DASLID or
CLOSELF

Called ASGCAT, OPENL3AT,
OPENL3AL, OPENL3LP,
OPENL3TP, or OPENL3S
with a LID associated
with a file that was
held or cataloged

Called read or write
service without calling
the open service first

Attempted to reuse LID
assigned to newly
cataloged file

Missing namelist
parameter

UCSS service called
without all required
arguments

Mean solar distance not
supplied as parameter in
call to WRITEL3S

Mean solar distance
specified as a solar
parameter is negative or
zero

Missing CLOSELF call
for a new Level 3A file

Missing DASLID call for
a new Level 1 or 2 file

Table F-1.

SYMBOLIC NAME

PFA_NOFILE

PFA_NOFILECRE

PFA_NOFIPARENT

PFA_NOFSTAVAIL

PFA_NOHELDFILE

PFA_NOMATVIRPMS

PFA_NOMORLUNS

PFA_NOOVRLAPTM

PFA_NOPGINTCAL

PFA_ NOPGTRMCAL

PFA_NOREQDATA

DESCRIPTION

File does not exist

New file was not created

No matching entry in file
parameter table for
requested file

Exceeded number of entries
in file status table

Held file not found

VIRTUAL UARS DAY and
DATA_FILE NAME list sizes
not equal

No more logical unit
numbers available

File time range and
requested time range do
not overlap

PGINIT was not called

PGTERM was not called

Required data not
available

F-14

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

Possibly specified
nonexistent file name in
FILE PARAMS namelist

Assigned file was not
opened before call to
DASLID

No FILE PARAMS namelist
corresponding to the
requested file in the
runstream

Contact UCSS software
maintenance

1. Failed to specify
"HOLD" on call
to DASLID or CLOSELF
2. Did not specify same
LID

Error in FILE PARAMS
namelist

Attempting to access too
many files at one time

The time range specified
in the open call does
not overlap the file
time range. 1In the
simulated environment,
probable inconsistency
between the processing
time range and the file
time range.

Missing PGINIT call
before calling UCSS
services

Program terminated
without calling PGTERM

File specified as
required input by the
scheduler is not
available

Table F-1.

SYMBOLIC NAME

PFA NOREQRECS

PFA_NOUSFREQT

PFA_NOVERTIMRNG

PFA_NOVIRFILID

PFA_NOVIRTAVAIL

PFA PGINTPREV

PFA_RECLENERR

PFA_ REQATTNOSUP

PFA_REQFILMISS

PFA_SEQTIMERR

PFA_TOMANYFILE

DESCRIPTION

Virtual file contains no
data records

Attempted to assign user
status file when no user
status files are defined
for the job

Version time range not
found in time version
array

No virtual file table
entry for the logical file
identifier

No room in virtual file
table

PGINIT already called

Expected record length
does not match actual
record length

Required catalog attribute
not provided

Missing one or more
required physical files
for a virtual read

Current record time is not
later than previous record
time

Exceeded maximum number of
FILE PARAMS namelists
supported by UCSS

UCSS Software Support Services Fatal Errors (Continued)

POSSIBLE CAUSES

All physical files have
no data

Scheduler does not know
of the use of user
status files in this job

UCSS software error.
Contact UCSS software
maintenance.

UCSS software error.
Contact UCSS software
maintenance.

Contact UCSS software
maintenance

Two calls to PGINIT in
same program

Data error. Data record
length is incorrect.

Required catalog
attribute(s) not
provided to DASLID
(see Table 3-4)

One or more Level 0 or
3A files needed for a
virtual file are
indicated as required by
the scheduler, but are
unavailable

Data times are not
increasing

User provided more

FILE _PARAMS namelists
than supported by the
UCSSs software. Contact
UCSS software
maintenance.

Table F-1. UCSS Software Support Services Fatal Errors (Continued)

SYMBOLIC NAME DESCRIPTION POSSIBLE CAUSES

PFA_UNEXBLKARG Unexpected blank argument 1. Logical file id is
blank in call to any
of the services

2. Old-new-flag is blank
in call to OPENL3AT,
OPENL3AL, OPENL3S, or
ASGCAT

3. Flux units,
wavelength units, or
distance flag is
blank in call to

READL3S
PFA_UNKNOWNLID Attempt to close or 1. Called CLOSELF or
deassign an unknown LID DASLID with incorrect
LID

2. Called CLOSELF or
DASLID without
corresponding open or

assign
PFA_UNKREQSFDU Required description id All portions of the
is not available for current file are
current file required and:

1. UARS SFDU file
missing or
unassigned, or,

2. Error in reading UARS
SFDU file, or,

3. SFDU descriptor id
with attributes that
are subset of current
file's attributes is
not present in UARS

SFDU file
PFA_USFNUMGTMAX User status file number The use of this user
greater than maximum status file number has
defined for job not been defined to the
scheduler

F-16

APPENDIX G

LEVEL 0 SFDU FILE DESCRIPTION

The information used to build the SFDU record for Level 3A data

is obtained from the SFDU file, an example of which is shown in

Figure G-1. Note that the file is known to the UCSS Software Services
by its logical name, UARS_SFDU_FILE, which must therefore be linked to
the actual file's name before a job that is to generate a new Level 3A

file with the desired SFDU record is run.

LEVEL 0 SFDU FILE DESCRIPTION

Figure G-1. Sample UCSS SFDU File

$SFDU GEN PARAMS

CONTROL_AUTHORITY ID = 'ZURS'
DEFAULT DESCRIPTION_ID = 'ZERO'
$END
$DESCRIPTION_ID_ PARAMS
DESCRIPTION ID = 'HR75'
ATTRIBUTE NAMES = 'TYPE', 'SUBTYPE', 'LEVEL'
ATTRIBUTE VALUES = 'HRDI', 'Z_WIND', '3AL'
$SEND
$SDESCRIPTION_ID_PARAMS
DESCRIPTION ID = 'HR12'
ATTRIBUTE NAMES = 'TYPE', 'SUBTYPE', 'LEVEL'
ATTRIBUTE VALUES = 'HRDI', 'WINDS', '2°'
$END
$DESCRIPTION_ID_PARAMS
DESCRIPTION ID = 'HRO6'
ATTRIBUTE NAMES = 'TYPE', 'LEVEL'
ATTRIBUTE VALUES = 'HRDI' '3AL'
$END
$DESCRIPTION_ID_PARAMS
DESCRIPTION ID = 'HRO1'
ATTRIBUTE NAMES = 'TYPE'
ATTRIBUTE VALUES = 'HRDI'

S$END

The file is composed of two different types of namelists whose
structures are described in Tables G-1 and G-2. The first namelist
contains general parameters required for constructing the SFDU record
and occurs only once in the file. The other namelist contains a
specific data descriptive record identifier (DDRI) and the attributes
of the data for which it is defined. It occurs once for each defined
DDRI supported by the UCSS.

LEVEL 0 SFDU FILE DESCRIPTION

Table G-1. Structure of SFDU GEN_PARAMS Namelist
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
CONTROL_AUTHORITY_ID control authority identifier C*4 "ZURS"
for UARS data as described
in Tables E-2 and E-7
DEFAULT_DESCRIPTION_ID | data descriptive record C*4 "ZERO"
identifier to be used if
attribute matching is
unsuccessful
Table G-2. Structure of DESCRIPTION_ID PARAMS Namelist
NAMELIST PARAMETER DESCRIPTION FORMAT VALUES
DESCRIPTOR_ID data descriptive record C*4 Note 1
identifier for UARS data at a
particular documentation level
ATTRIBUTE NAMES array of attribute names C*20 Note 2
(up to 20 allowed)
ATTRIBUTE_VALUES array of attribute values C*20 Note 3

Notes:

(up to 20 allowed)

1 The first two characters are associated with the instrument
identifier and the last two are numeric digits (See Reference 1).

2 The attribute names must belong to the set described in

Table G-3.

3 The allowed values for the specified attributes are the same as
those with which the pertinent files can be cataloged.

The attributes that can be used to define the sets of data

associated with a particular DDRI are those that normally characterize

a science data file in the UCSS environment.
values are shown in Table G-3.
used in the definition.

Their names and possible
One or more of these attributes can be
See Reference 1 for a more detailed

description of the manner in which DDRIs are defined and maintained.
Note however that because of the way attribute matching is done in the
UCSS Software Services, if different DDRIs are to be assigned to

G-3

LEVEL 0 SFDU FILE DESCRIPTION

different levels in the document hierarchy, e.g. 'TYPE' at one level

and 'TYPE' and 'SUBTYPE' at another level, then the DDRI assigned to
the lower level, e.g. the latter in the current example, should

precede the one assigned at the higher level, e.g. the former, in the
SFDU file. Otherwise, matching will complete before the desired DDRI

is found. Moreover, if no DDRIs with matching attributes are found at
any level of documentation, the default value in the GEN_SFDU_PARMS
namelist will be used instead, or, if that value is missing, the

default value assumed by Software Services when the SFDU file is not
accessible or nonexistent, namely 'ZNON'.

Table G-3. Allowed attributes for DESCRIPTION_ID PARAMS Namelist

ATTRIBUTE NAME DESCRIPTION POSSIBLE VALUES
TYPE instrument identifier See Note 1
SUBTYPE data species or measurement type See Note 2
LEVEL processing level of data '3AL', "3AS"'; '3AT!,
'3LP','3TP', '3BS'
DAY UARS day number '1' to '9999'
e
Notes
1 Identifier for one of the UARS instruments, namely 'CLAES’',
'HALOE', 'HRDI', 'ISAMS', 'MLS', 'PEM', 'SOLSTICE', 'SUSIM' and
'WINDII'.
See Reference 1, Item 4 for the range of data descriptive record
identifiers presently allocated to each UARS instrument.
2 Dependent on UARS instrument.
-~

APPENDIX H

LEVEL 0 OBC REPORT NAMES

H.1 OBC REPORT NAMES AND NUMBERS

Table H-1 shows the OBC report names and numbers that are decoded
by the OBCDECODE routine.

REPORT NBR VARIABLE

ACS%01 01

ACS%04 04

ACS%09 09

GYR%01 12

EPH%01 13

Table H-1.

IRSLEW
IYSLEW
ICAL
MODE
EYSLEW3

EX
EY
EZ

TF

TFYEAR
TUPDATE

CNGX

CNGY

CNGZ

CNGX1
CNGY1
CNGZ1
CNGX2
CNGY2
CNGZ2
CNGX3
CNGY3
CNGZ3
CNGX4
CNGY4
CNGZ4
CNGX5
CNGY5
CNGZ5
CNGX6
CNGY6
CNGZ6
CNGX7
CNGY7
CNGZ7

EOGBRF1
EOGBRF2
EOGBRF3

OFFSET

00.6
00.7
03.3
03.5
08.0

00.0
02.0
04.0

00.0

05.0
17.0

CWVWONOLIEWNE O
O00OO0OO0OO0OO0OO0OO0O0OC

DECODE

Bit
Bit
Bits
Bits
Bytes

WWN R

2 Bytes
2 Bytes
2 Bytes

5 Bytes

1 Byte
5 Bytes

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

HFHERHRRERRREERHERPRBRHEBHERERRBRERER R

4 Bytes
4 Bytes
4 Bytes

OBC Report Names Decoded by OBCDECODE

SUBSCRIPT

OBC_BYTE
OBC_BYTE
OBC_INTEGER
OBC_INTEGER
OBC_REAL

OBC_REAL
OBC_REAL
OBC_REAL

OBC_INTEGER

OBC_INTEGER
OBC_INTEGER

OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE
OBC_BYTE

OBC_REAL
OBC_REAL
OBC_REAL

HNRN R

W N =

1 2
(UDTF)
3

4 5
(UDTF)

VONOWMS WD R

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
EOGBVF1 12.0 4 Bytes OBC_REAL B
EOGBVF2 16.0 4 Bytes OBC_REAL 5
EOGBVF3 20.0 4 Bytes OBC:REAL 6
EPH%02 15
EOGVFAL 08.0 2 Bytes OBC_INTEGER 1
HGA%01 21
HGTAFLGA 00.0 1 BIT OBC_BYTE 1
HGTAFLGB 00.1 1 BIT OBC_BYTE 2
HGLRFLGA 00.2 1 BIT OBC_BYTE 3
HGLRFLGB 00.3 1 BIT OBC_BYTE 4
HGMODCUR 01.0 3 BIT OBC_INTEGER 1
HGTRGCUR 02.3 1 BIT OBC_BYTE S
HGGIMCA 07.0 1 BYTE OBC_REAL :
HGGIMCB 08.0 1 BYTE OBC_REAL 2
UFL%01 24
S1 00.0 2 Byte OBC_REAL 1
S2 02.0 2 Byte OBC_REAL 2
S3 04.0 2 Byte OBC_REAL 3
PM111 12.0 4 Byte OBC_REAL 4
PM112 16.0 4 Byte OBC_REAL 5
PM113 20.0 4 Byte OBC_REAL 6
SCP11 24.0 1 Byte OBC_REAL 7
SCP12 25.0 1 Byte OBC_REAL 8
SCp22 26.0 1 Byte OBC_REAL 9
UFL%02 25
PM115 00.0 4 Byte OBC_REAL 1
PM116 04.0 4 Byte OBC_REAL 2
PM119 08.0 4 Byte OBC_REAL 3
UFL%09 32
TUS 14.0 5 Bytes (RETURNED IN RET_DATTIM)
SEP%01 43
BETA1l 22.0 2 Bytes OBC_REAL 1
PMO%01 53
TDAY 20.0 1Byte OBC_INTEGER 1
SPP%01 54
PFTRGFLG 00.0 1l Bik OBC_BYTE 1
PFRATEFL 00.1 1 Bit OBC_BYTE 2
PFOFSETF 00.2 1 Bit OBC_BYTE 3
PFOCFLAG 00.3 1 Bit OBC_BYTE 4
PFPRFLAG 00.4 1 Bit OBC_BYTE 5
PFEPFLAG 00.5 1 Bit OBC_BYTE 6
PFAUTOFL 00.6 1 Bit OBC_BYTE 7
PFSTATS 01.3 1 Bit OBC_BYTE 8
PFSTAT4 01.4 1 Bit OBC_BYTE 9

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
PFSTAT3 01.5 1 Bit OBC_BYTE 10
PFSTAT2 01.6 1 Bit OBC_BYTE i1
PFSTAT1 01.7 1 Bit OBC_BYTE 12
PFMODCUR 02 1 Byte OBC_INTEGER 1
PFACQSTS8 03.0 1 Bit OBC_BYTE 13
PFACQST7 03.1 1 Bit OBC_BYTE 14
PFACQST6 03.2 1 Bit OBC_BYTE 15
PFACQSTS 03.3 1 Bit OBC_BYTE 16
PFACQST4 03.4 1 Bit OBC_BYTE 17
PFACQSTS3 03.5 1 Bit OBC_BYTE 18
PFACQST?2 03.6 1 Bit OBC_BYTE 19
PFACQST1 03.7 1 Bit OBC_BYTE 20
PFFDCST8 04.0 1 Bit OBC_BYTE 21
PFFDCST7 04.1 1 Bit OBC_BYTE 22
PFFDCST6 04.2 1 Bit OBC_BYTE 23
PFFDCSTS5 04.3 1 Bit OBC_BYTE 24
PFFDCST4 04.4 1 Bit OBC_BYTE 25
PFFDCST3 04.5 1 Bit OBC_BYTE 26
PFFDCST2 04.6 1 Bit OBC_BYTE 27
PFFDCST1 04.7 1 Bit OBC_BYTE 28
PFGOLST8 05.0 1 Bit OBC_BYTE 29
PFGOLST7 05.1 1 Bit OBC_BYTE 30
PFGOLST6 05.2 1 Bit OBC_BYTE 31
PFGOLST5 05.3 1 Bit OBC_BYTE 32
PFGOLST4 05.4 1 Bit OBC_BYTE 33
PFGOLST3 05.5 1 Bit OBC_BYTE 34
PFGOLST2 05.6 1 Bit OBC_BYTE 35
PFGOLST1 05.7 1 Bit OBC_BYTE 36
PFTRGSTS8 06.0 1 Bit OBC_BYTE 37
PFTRGST7 06.1 1 Bit OBC_BYTE 38
PFTRGST6 06.2 1 Bit OBC_BYTE 39
PFTRGSTS 06.3 1 Bit OBC_BYTE 40
PFTRGST4 06.4 1 Bit OBC_BYTE 41
PFTRGST3 06.5 1 Bit OBC_BYTE 42
PFTRGST2 06.6 1 Bit OBC_BYTE 43
PFTRGST1 06.7 1 Bit OBC_BYTE 44
PFSUNSTS8 07.0 1 Bit OBC_BYTE 45
PFSUNST7 07.1 1 Bit OBC_BYTE 46
PFSUNST6 07.2 1 Bit OBC_BYTE 47
PFSUNSTS 07.3 1 Bit OBC_BYTE 48
PFSUNST4 07.4 1 Bit OBC_BYTE 49
PFSUNSTS3 07.5 1 Bit OBC_BYTE 50
PFSUNST?2 07.6 1 Bit OBC_BYTE 51
PFSUNST1 07.7 1 Bit OBC_BYTE 52
PFTRGCUR 08 1 Byte OBC_INTEGER 2
PFTRGPRM 09 1 Byte OBC_INTEGER 3
PFTRGSEC 10 1 Byte OBC_INTEGER 4
PFACQCNT 11 1 Byte OBC_INTEGER 5
PFACQTHR 12 1 Byte OBC_INTEGER 6
PFOCSWCT 13 1 Byte OBC_INTEGER 7
PFTIMER 14 2 Bytes OBC_INTEGER 8
PFTIMESL 16 2 Bytes OBC_INTEGER 9

Table H-1. OBC Report Names Decoded by OBCDECODE (Continued)

REPORT NBR VARIABLE OFFSET DECODE SUBSCRIPT
PFGIMCUA 18 3 Bytes OBC_REAL 1
PFGIMCUB 21 3 Bytes OBC_REAL 2
PFGMCMDA 24 1 Byte OBC_INTEGER 10
PFGMCMDB 25 1 Byte OBC_INTEGER 11

SPP%02 55
PFTARGA 00 3 Bytes OBC_REAL 1
PFTARGB 03 3 Bytes OBC_REAL 2
PFT1MAX 06 2 Bytes OBC_REAL 3
PFT1MIN 08 2 Bytes OBC_REAL 4
PFT2MAX 10 2 Bytes OBC_REAL 5
PFT2MIN 12 2 Bytes OBC_REAL 6
PFGOALA 14 3 Bytes OBC_REAL 7
PFGOALB 17 3 Bytes OBC_REAL 8
PFOFSETA 20 2 Bytes OBC_REAL 9
PFOFSETB 22 2 Bytes OBC_REAL 10
PFRTMAXA 24 1 Byte OBC_INTEGER 1
PFRTMAXB 25 1 Byte OBC_INTEGER 2
SPP%03 56
PFPSCMDA 00 2 Bytes OBC_REAL X
PFPSCMDB 02 2 Bytes OBC_REAL 2
PFSLRATA 04 2 Bytes OBC_REAL 3
PFSLRATB 06 2 Bytes OBC_REAL 4
PFSSERRA 08 2 Bytes OBC_REAL 5
PFSSERRB 10 2 Bytes OBC_REAL 6
PFSTCUAl 12 2 Bytes OBC_REAL 7
PFSTCUA2 14 2 Bytes OBC_REAL 8
PFSTCUA3 16 2 Bytes OBC_REAL 9
PFSTCUB1 18 2 Bytes OBC_REAL 10
PFSTCUB2 20 2 Bytes OBC_REAL 11
PFSTCUB3 22 2 Bytes - OBC_REAL 12

LEVEL 0 OBC REPORT NAMES

H.2 OBC REPORT MNEMONICS

The following sample code shows how to use the mnemonics defined
in UCSS_INCDIR:OBC_REP_PARMS.INC to refer to OBC report variables.

INCLUDE/LIST 'UCSS_INCDIR:OBC_REP_PARMS.INC'

INTEGER*4 ACS04, OBC_EX, OBC_EY, OBC_EZ

.
.

PARAMETER (ACS04 =04)
PARAMETER (OBC_EX
PARAMETER (OBC_EY
PARAMETER (OBC_EZ

OBC_REAL s= 02 D
OBC_REAL s= 02 D
OBC_REAL s= 02 D

nnn
(PSS I
—
—— e

c
C END OF INCLUDE FILE
o
CALL READLO (LID, REQ TIME, RET TIME, OBC_FRM,
1 PARITY, FILL, GAP_FLAG, TIME FLAG, EMAF RATE,
1 VERSION, STATUS)
CALL OBCDECODE (OBC_ FRM, ACS04, REQ_TIME,RET TIME,QUALITY,
1 OBC_REAL,INT VAR,BYTE VAR,OBC REC,
2 STATUS)
c
C USE THE MNEMONICS CONTAINED IN THE INCLUDE FILE TO REFERENCE THE
C VALUES FOR EX, EY, AND EZ
¢
EX = OBC_REAL(OBC_EX)
EY = OBC_REAL(OBC_EY)
EZ = OBC_REAL(OBC_EZ)
END

ATC
CCB
CDHF
CPU
CRC
DCF
DCL
DEC
EMAF
GE
GMT
GSFC
1/0
JATC
LID
NASA
OBC
PI
RAC
SFDU
SMAF
SMIF
UARS
ucss
UDTF
VAX
VMS

APPENDIX I

GLOSSARY

absolute time code
Configuration Control Board
Central Data Handling Facility
central processing unit
cyclical redundancy check
Data Capture Facility

Digital Command Language
Digital Equipment Corporation
engineering major frame
General Electric

Greenwich Mean Time

Goddard Space Flight Center
input/output

Julian format ATC

logical file identifier

National Aeronautics and Space Administration

onboard computer

Principal Investigator
Remote Analysis Computer
standard formatted data unit
science major frame

science minor frame

Upper Atmosphere Research Satellite

UARS CDHF Software System
UARS date and time format
Virtual Address Extension
Virtual Memory System

APPENDIX J

REFERENCES

1. Goddard Space Flight Center (GSFC), Contractual Specification for
the UARS CDHF Software System (UCSS), NAS 5-29250.

2. =--, Statement of Work (SOW) for the UARS CDHF Software System
(UCSS), October 10, 1985, attached to GSFC Contract NAS 5-29250.

3. ==, UARS Ground Data Processing Capability and Requirements
Document, GSFC Document No. 430-1401-00, February 1985.

4. =--, UARS Programmer's Guide to Orbit and Attitude Services, August
1987 (preliminary).

5. Computer Sciences Corporation, CSC/SD-86/6705, Upper Atmosphere
Research Satellite (UARS) Central Data Handling Facility (CDHF)
Software System (UCSS) Requirements Analysis Document, July 1986.

6. =--, CSC/SD-87/6724, Upper Atmosphere Research Satellite tUARS)
Central Data Handling Facility (CDHF) Software System (UCSS) Critical
Design Specification, October 1987.

7. ==, CSC/SD-87/6729, Interface Control Document Between the Upper
Atmosphere Research Satellite (UARS) Central Data Handling Facility
(CDHF) and the Generic Time Division Multiplexed (GTDM) Data Capture
Facility (DCF), June 1987.

8. General Electric Astro Space Division, Program Information Release
(PIR) U-1K21-UARS-7000, Preliminary Science Format Definition -
Including S/C Contribution, February 8, 1987.

9. Computer Sciences Corporation, CSC/SD-87/6725, Upper Atmosphere
Research Satellite (UARS) Central Data Handling Facility (CDHF)
Software System (UCSS) User's Guide, October 1987.

10. Consultative Committee for Space Data Systems, CCSDS 620.0-B-1,
Standard Formatted Data Units =-- Structure and Construction Rules

(draft), November 1987.

