
Canadian Space Agency – Space Science and Technology

Stratos PRISM TM/TC Interface Specifications

Program: Stratos
Project: PRISM (Payload Remote Interface, Sensors Suite & Mass Memory)
Title: Technical Note - Stratos PRISM Telemetry and Telecommands (TM/TC)

Interface Specifications
Doc. Number: TN2018-02-PRISM
Date of 1st

release:
September 29th, 2017

Date of current
release:

January 16, 2019

Author: JF Cusson, Senior Engineer – Software & Digital Electronics
James Lee, Engineer – Spacecraft Control Systems
Ken Lee, FSWEP internship CSA (Mechanical Engineering Master’s Thesis,
McGill University)

Reviewed by: Claude Brunet, Patrice Cote (CSA)
Approved by: JF Cusson
Release: 2

1 SCOPE

1.1 Introduction
As part of the Engineering Capability Demonstration (ECD) program, the Canadian Space

Agency (CSA) is designing and building a flight subsystem supporting science payloads onboard

stratospheric balloons, to provide real-time data, such as time, gondola position and

orientation, environment etc., as well as offering services like data relay to ground (i.e.

forwarding to PASTIS) and mass-memory storage. This sub-system is identified as the Stratos

Payload Remote Interface, Sensor Suite and Mass Memory (PRISM).

1.2 Identification
This technical note provides detailed formatting information related to the telemetry

generated by the PRISM sub-system, as well as the required formatting to interact with the

PRISM over telemetry and telecommands channels, and related mechanical/electrical

interfaces.

2 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

1.3 System Overview
Figure 1 shows the PRISM as part of a typical setup on a stratospheric balloon gondola.

Figure 1: Typical Gondola Setup for PRISM

1.4 Document Overview
Section 2 details the mechanical and electrical interfaces, related to the data communication

links used to exchange telemetry and telecommands with the PRISM. Section 3 defines the

format of the telemetry/telecommands messages.

1.5 Acronyms
AD Applicable Documents
CPU Central Processing Unit
CSA Canadian Space Agency
ECD Engineering Capability Demonstration
GPS Global Positioning System
MSL Mean Sea Level
NED North East Down
NMEA National Marine Electronics Association
NTP Network Time Protocol
PRISM Payload Remote Interface, Sensor Suite and Mass Memory Sub-system
RD Reference Document
SI Système International
SW Software
TBC To Be Confirmed
TBD To Be Determined

3 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

TC Telecommands
TM Telemetry
TMTC Telemetry and Telecommands
UTC Universal Time Coordinate
WGS84 World Geodetic System of 1984

1.6 Applicable Documents

AD
No.

Document No. Document Title Rev.
No.

Date

1. CSA-STRATOS-RD-0005 Stratos Gondola System
Requirements Document

TBD TBD

2. CSA-STRATOS-RD-0004 Stratos Gondola Equipment
General Design and Interfaces
Requirements (GDIR)

TBD TBD

3. CSA-STRATOS-RD-0012 Stratos Gondola Equipment
PRISM Sub-System High-Level
Requirements Specification

Rel.A June, 2018

1.7 Reference Documents

RD
No.

Document No. Document Title Rev.
No.

Date

1. n/a

2.

4 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

2 Mechanical and Electrical Interfaces

Science payloads and other sub-systems are connected to the PRISM via Ethernet or serial

data links (i.e. RS-422, RS-485, RS-232).

Planned connectors available for payloads on the PRISM front panel, for telemetry/tele-

commands:

 Ethernet ports, using DB9F connectors (pinout compatible with PASTIS). 10 Mbits/s.

 Serial ports, also using DB9F. Serial standard software selectable: RS232, RS422 or

RS485 (slave or master). Pinout will vary depending on the selected standard.

3 Telemetry and Telecommands Formatting

3.1 General requirement

1. One general format, the same for telemetry and telecommands, so that everything could be parsed from the same input.

2. Self-contained: No need to rely on previous packet to understand the meaning of a value (e.g. no delta values).

3. A mechanism is needed to de-multiplex the data depending on its origin: on ground, we will need to route packets from

the payloads to the right scientists. Therefore, a field shall allow for identification of the source.

4. Each packet needs to be time-stamped with the official on-board mission time, in addition to the time-stamp of the

originated sub-system.

5. Each telemetry packet shall uniquely identify its data fields with a single identifier, such that they can be decoded easily.

6. Each command packet shall have an identifier that starts with “CMD”, and include a command count and a checksum on

the value of its parameters.

7. When applicable, the checksum should be calculated and located such as to minimize the impact on the receiving onboard

process.

3.2 General Formatting

Telemetry and telecommands packets will be formatted as an ASCII string containing printable characters (i.e. codes 0x20 to

0x7E inclusively, expressed here in hexadecimal) listing comma separated values (CSV), with the following conventions:

1. PACKET PROVENANCE (SOURCE) – PRISM ONLY, SCIENCE PAYLOAD TO LEAVE EMPTY: String will be prefaced with a

keyword as a “magic cookie” to identify the stream. IMPORTANT: This identifier will be generated ONLY by the PRISM, any

subsystem or science payload sending a packet to the PRISM shall leave this field empty (i.e. the packet will start with a

comma). The PRISM will then populate it with an identifier related to the interface port used, e.g. CHAN-2 if the packet

was received on the second Ethernet port. When the packet will be generated by the PRISM itself, the SOURCE will be

PRISM (TBC);

6 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

2. MISSION TIME STAMP – PRISM ONLY, SCIENCE PAYLOAD TO LEAVE EMPTY: A date-time (UTC) field will follow, formatted

ISO-8601 EXCEPT FOR THE “T” DELIMITER to be replaced by a space, as: yyyy-mm-dd hh:mm:ss.sss. The time-zone

indicator (i.e. training “Z”) is to be omitted, as all timestamp shall be interpreted as UTC, and NOT local. The MISSION

TIME STAMP will be filled by the PRISM itself, from its onboard clock synchronized from GPS UTC. Any subsystem or science

payload generating telemetry destined to the PRISM shall leave this field empty.

3. SUB-SYSTEM TIME STAMP: A date-time (UTC) field will follow, formatted ISO-8601 EXCEPT FOR THE “T” DELIMITER to be

replaced by a space, as: yyyy-mm-dd hh:mm:ss.sss. The time-zone indicator (i.e. training “Z”) is to be omitted, as all

timestamp shall be interpreted as UTC, and NOT local. Filled by the sub-system/science payload generating the packet.

Having a MISSION TIME versus a SUB-SYSTEM TIME will allow synchronization of data relative to its generator system (e.g.

science payload) or more globally with all other systems interfacing with the PRISM, which maintains an official mission

time. Note that in the case of a packet generated by the PRISM itself, the SUB-SYSTEM TIME might be left empty, because it

is identical to the MISSION TIME.

4. PACKET ID (i.e. the “leading identifier or packet ID”): The next item in the packet will be the PACKET ID, which uniquely

identifies the content of the packet;

5. SOFTWARE ID: Some telemetry and all commands include this field. It uniquely identifies the software to which the

command is destined to, or the software that generated the telemetry.

6. LIST FORMAT: Values will be comma separated;

7. BINARY DATA: Binary data dumps (e.g. parts of pictures or memory dumps) shall be text encoded using the Base64

representation (radix-64);

8. VALUE REPRESENTATION: Data values other than date or binary dumps will be in any format acceptable to the ANSI C

string-to-double function strtod(3). “inf” and “nan” are acceptable.

9. LEADING ZEROS: Except when noted otherwise, numeric values will not be represented with leading zeros (e.g. “82” and

NOT “0082”). A notable exception is within the time stamps, where month, day, hours etc… all must use leading zeros to

keep the length of the time-stamp standard (e.g. “2018-03-20 09:30.04.001”)

10. EMPTY FIELDS: Field not supplied or not available will be left empty (i.e. continuous commas);

7 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

11. TERMINATION: String will be terminated by \r\n (carriage return – ASCII hexadecimal 0x0D, line feed – ASCII 0x0A);

Note that the tele-commands adhere (i.e. is compatible with) this format, but includes more fields in their standard header.

The complete and exact list of items composing a packet shall be unique per its packet ID, for any packet generated by the

PRISM. In general, packets create by other subsystems and science payload should also adhere to this specification, to simplify

decoding and displaying.

Example 1:

PRISM,2017-04-08 03:12:26.908,,GPS1,MODE_AIR,31235.0,2347.97,S,13352.96,E,558.4,M

Where :

 PRISM is the SOURCE, in this case specifying that the PRISM generated the telemetry contained in this packet

 2017-04-08 03:12:26.908 Is the MISSION time stamp;

 The SUB-SYSTEM time stamp is not provided, because identical to the MISSION time (since the PRISM itself generated this

telemetry packet).

 GPS1 is the packet ID;

 The rest is a list of telemetry values, specific to this packet; and

 The string is terminated by 2 characters, 0x0D and 0x0A (non printable).

8 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

Example 2:

In this example, we’ll consider a science payload sending telemetry to the PRISM via an Ethernet connection (connected to

physical port #2). Originally, the science payload would generate a packet similar to the following, and send it to the PRISM:

,,2017-04-08 05:10:02.003,SPECTR,0,33.8,,,44.0,V,35.007

Where :

 There are 2 empty field at the start of the packet;

 2017-04-08 03:12:26.908 Is the SUBSYSTEM (i.e. science payload) time stamp;

 SPECTR is the packet ID;

 The rest is a list of telemetry values, specific to this packet (note that some fields are empty, specifying that these values

were not available); and

 The string is terminated by 2 characters, 0x0D and 0x0A (non printable).

The PRISM, upon receiving the packet on channel #2 (e.g. Ethernet port #2), adds the SOURCE (i.e. CHAN-2) and the MISSION

TIME in the first two empty fields, which leads to the following packet being relayed to the ground and saved in the PRISM

mass memory:

CHAN-2,2017-04-08 05:10:00.900,2017-04-08 05:10:02.003,SPECTR,0,33.8,,,44.0,V,35.007

By adding the SOURCE, the ground equipment will be able to efficiently demultiplex telemetry per science team and other

subsystems.

9 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

3.3 SOURCE (SRC) Field

Possible values:

 “SWNAV”: From the SWNAV process executing on NAVEM computer

 “PRISM”: AHR0 and POS0 multicast messages to instruments from the SWNAV process executing on NAVEM computer

 “SW_EM”: From the SWEM process executing on NAVEM computer

 “IOCTL”: From the I/O Controller

 “SWCDH”: From the CDH process executing on the CDH computer

 “GPS01”: From the NovAtel GPS receiver, as collected by SWCDH

 “UPLNK”: Reserved for uplinked packets

 “PLDxx”: (xx=00 to 99) Reserved for payloads serviced by the PRISM

 “AUXxx”: (xx=00 to 99) Reserved for peripherals connected to the PRISM

Note that the source field has a fixed length of 5 characters, for alignment purposes.

For backward compatibility with AUSTRAL2017 campaign, the following values shall NOT be used for PACKET SOURCE:

 DAM_RTCLK

 DAM_HKPNG

 DAM_TEMPS

 DAM_HARDW

 DAM_UBLOX

 DAM_NOVATEL

 DAM_TC

 DAM_IMG

 DAM_IM2

 DLOG_CAM

 BM1_ADU

 BM2_ADU

10 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

 BM1_TLM

 BM2_TLM

 BM1_HKP

 BM2_HKP

 ACK

 NACK

3.4 SOFTWARE IDENTIFIER (SW-ID) Field

Possible values:

 “SWNAV”: The SWNAV process executing on NAVEM computer

 “SW_EM”: The SWEM process executing on NAVEM computer

 “IOCTL”: The main software of the I/O Controller

 “SWCDH”: The CDH process executing on the CDH computer

 “GPS01”: The NovAtel GPS receiver

Note that the software identifier field has a fixed length of 5 characters, for alignment purposes.

11 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

3.5 Telemetry Formatting

3.5.1 Periodic and One-Time (OT) Telemetry Format

[src],[m-time],[ss-time],[tm-id],[field 1],[field 2],…,[field n]

Note: “EVENT”, “ACK” and “NACK” are reserved telemetry identifiers (i.e. [tm-id] cannot be set to these values for

general periodic and one-time telemetry).

3.5.2 Event Telemetry

[src],[m-time],[ss-time],EVENT,[event string]

3.5.3 Command Acknowledgment

[src],[m-time],[ss-time],ACK/NACK,[sw-id],[cnt],[cmd-id],[command parameters/message]

Where:

 src: The source, relative to the PRISM, of the packet. INSERTED BY THE C&DH. See “SOURCE Field” above, for

possible values.

 m-time: The mission time. INSERTED BY THE C&DH

 ss-time: The sub-system time.

 ACK/NACK: Fixed identifier. ACK for a positive acknowledgment, NACK otherwise.

12 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

 sw-id: The identifier of the software that processed the command that is acknowledged. See the “SOFTWARE

IDENTIFIER” section above, for possible values.

 cnt: Command counter. The source process should increment this counter. The goal is to have a different value of

this counter for several successive commands such that acknowledgments can be identified, not necessarily to verify

the sequence.

 cmd-id: Identification of the command. Example: “PING”.

 Command parameters/message: An optional field. Could be empty or could be replaced by a generic message

(e.g. provide the software version in case of a PING, or the cause of a negative acknowledgment NACK).

3.6 Command Formatting

[src],[m-time],[ss-time],CMD,[sw-id],[cnt],[chk],[cmd-id],[command parameters…]

Where:

 src: The source, relative to the PRISM, of the packet. INSERTED BY THE C&DH. See “SOURCE Field” above, for

possible values.

 m-time: The mission time. INSERTED BY THE C&DH

 ss-time: The sub-system time.

 CMD: Fixed identifier. Note that in the event that the command format would change, this identifier could have a

version number attached to it (e.g. CMD2, meaning “this is a command, with format #2”). So it is compulsory for the

receiving process to compare with the full string (i.e. receivedCommand.equals(“CMD”)) instead of verifying only its

start (i.e. receivedCommand.startsWith(“CMD”)).

 sw-id: The identifier of the software to which this command is destined to. A process should ignore commands with

another destination than itself. See the “SOFTWARE IDENTIFIER” section above, for possible values.

 cnt: Command counter. The source process should increment this counter. The goal is to have a different value of

this counter for several successive commands such that acknowledgments can be identified, not necessarily to verify

the sequence.

 chk: Checksum. See “COMMAND CHECKSUM” section below for more information.

 cmd-id: Identification of the command. Example: “PING”.

13 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

 Command parameters…: comma separated values, providing command parameters.

Note that the full command packet string will be terminated by the two characters CR-LF.

3.7 Command Checksum

 Calculated by adding the byte value of each character (e.g. “PING” = 80+73+78+71 = 302).

 Calculated on the substring AFTER the 6-fields header “[src],[m-time],CMD,[ss-time],[cnt],[chk],”

 Taking into consideration ONLY ASCII character, i.e. not including the line termination (carriage return-line feed)

nor any null character. Also excluding SPACE character (ASCII decimal 32).

 See appendix : Calculating Checksum for the actual algorithm.

4 Telemetry and Telecommands Procedures

4.1 Periodic Telemetry

Sent at a specific rate, continually. Can be turned OFF. Controlled by setting

parameters in the generating software. The packet identifier determine the content of

each telemetry packet.

4.2 One-Time (OT) Telemetry

Sent upon request, or triggered by specific events. Again, the packet identifier

determine the content of each telemetry packet.

4.3 Event Telemetry

An event telemetry only provide a message string, and does not contain specific comma

separated fields after the packet header. The messages will be displayed in a special

window on ground, and are expected to require the attention of the operator. An event

message is not necessarily associated with an anomaly.

Example:

SWCDH,2017-04-08T05:10:00.900,,EVENT,FLIGHT PHASE changed from ASCENT to CEILING

4.4 Command Acknowledgment

See the “COMMAND FLOW” section below.

16 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

4.5 Command Flow

Each command received will be decoded and validated. Upon the end of the command

validation process, a proper ACK or NACK reply will be sent back. If there is an issue

while executing the command, an EVENT telemetry might be generated to report it.

17 Stratos PRISM TMTC Specs Release 2 - 30 Jan. 2019

Copyright © 2019 Canadian Space Agency

APPENDIX: CRC Calculation

Note: In the 2018 implementation, there were two different way of calculating the CRC. SW-

CDH and SW-NAV did not use the way described in this document, using an unsigned byte to

keep the CRC result between 0-255, while SW-EM did not restrict. The CRC will be

standardized in future releases of the system.

SW-NAV CRC Calculation:

/*==*/

/*==*/

/**

 * calculateChecksum()

 *

 * This method calculates the telemetry message checksum, used to verify telecommands

 *

 * @param commanId Sring Command name

 * @param params String[] array of command parameters

 * @return byte checksum the computed checksum

 * */

public byte calculateChecksum(String commandId, String[] params) {

/*==*/

 byte checksum = 0;

 byte[] b = commandId.getBytes();

 if(b != null) {

 for(int j=0; j<b.length; j++) {

 int byteValueUnsigned = (int)(b[j]) & 0xFF; //probably not necessary

 if((byteValueUnsigned > 32) && (byteValueUnsigned < 127)) {

 checksum += b[j];

 }

 }

 }

 for(String param : params) {

 b = param.getBytes();

 if(b != null) {

 for(int j=0; j<b.length; j++) {

 int byteValueUnsigned = (int)(b[j]) & 0xFF; //probably not necessary

 if((byteValueUnsigned > 32) && (byteValueUnsigned < 127)) {

 checksum += b[j];

 }

 }

 }

 }

 return(checksum);

}

